3,739 research outputs found
Policies And International Integration: Influences On Trade And Foreign Direct Investment
This paper assesses the importance of border and non-border policies for global economic integration. The focus is on four widely-advocated policies: removing explicit restrictions to trade and FDI; promoting domestic competition; improving the adaptability of labour markets; and ensuring adequate levels of infrastructure capital. The analysis covers FDI and trade in both goods and services, thus aiming to account for the most important channels of globalisation and dealing with most modes of cross-border services supply. It first describes trends in trade, FDI and the four sets of policies using a large set of structural policy indicators recently constructed by the OECD, including the new summary indicators for FDI-specific regulations described in Golub (2003). It then estimates the impact of policies on bilateral trade and bilateral and multilateral FDI. The results highlight that, despite extensive liberalisation over the past two decades, there is scope for further reducing policy barriers to integration of OECD markets. Remaining barriers have a significant impact on trade and FDI, with anticompetitive domestic regulations and restrictive labour market arrangements estimated to curb integration as much as explicit trade and FDI restrictions. Simulating the removal of such barriers suggests that the quantitative effects of further liberalisation of trade, FDI and domestic product and labour markets on global integration could be substantial
Dynamical decoherence of the light induced interlayer coupling in YBaCuO
Optical excitation of apical oxygen vibrations in
YBaCuO has been shown to enhance its c-axis
superconducting-phase rigidity, as evidenced by a transient blue shift of the
equilibrium inter-bilayer Josephson plasma resonance. Surprisingly, a transient
c-axis plasma mode could also be induced above T by the same apical
oxygen excitation, suggesting light activated superfluid tunneling throughout
the pseudogap phase of YBaCuO. However, despite the
similarities between the above T transient plasma mode and the
equilibrium Josephson plasmon, alternative explanations involving high mobility
quasiparticle transport should be considered. Here, we report an extensive
study of the relaxation of the light-induced plasmon into the equilibrium
incoherent phase. These new experiments allow for a critical assessment of the
nature of this mode. We determine that the transient plasma relaxes through a
collapse of its coherence length rather than its carrier (or superfluid)
density. These observations are not easily reconciled with quasiparticle
interlayer transport, and rather support transient superfluid tunneling as the
origin of the light-induced interlayer coupling in
YBaCuO.Comment: 27 pages (17 pages main text, 10 pages supplementary), 5 figures
(main text
Far-infrared absorption and the metal-to-insulator transition in hole-doped cuprates
By studying the optical conductivity of BSLCO and YCBCO, we show that the
metal-to-insulator transition (MIT) in these hole-doped cuprates is driven by
the opening of a small gap at low T in the far infrared. Its width is
consistent with the observations of Angle-Resolved Photoemission Spectroscopy
in other cuprates, along the nodal line of the k-space. The gap forms as the
Drude term turns into a far-infrared absorption, whose peak frequency can be
approximately predicted on the basis of a Mott-like transition. Another band in
the mid infrared softens with doping but is less sensitive to the MIT.Comment: To be published on Physical Review Letter
Anomalous relaxation kinetics and charge density wave correlations in underdoped BaPb1-xBixO3
Superconductivity often emerges in proximity of other symmetry-breaking
ground states, such as antiferromagnetism or charge-density-wave (CDW) order.
However, the subtle inter-relation of these phases remains poorly understood,
and in some cases even the existence of short-range correlations for
superconducting compositions is uncertain. In such circumstances, ultrafast
experiments can provide new insights, by tracking the relaxation kinetics
following excitation at frequencies related to the broken symmetry state. Here,
we investigate the transient terahertz conductivity of BaPb1-xBixO3 - a
material for which superconductivity is adjacent to a competing CDW phase -
after optical excitation tuned to the CDW absorption band. In insulating BaBiO3
we observed an increase in conductivity and a subsequent relaxation, which are
consistent with quasiparticles injection across a rigid semiconducting gap. In
the doped compound BaPb0.72Bi0.28O3 (superconducting below Tc=7K), a similar
response was also found immediately above Tc. This observation evidences the
presence of a robust gap up to T=40 K, which is presumably associated with
short-range CDW correlations. A qualitatively different behaviour was observed
in the same material fo T>40 K. Here, the photo-conductivity was dominated by
an enhancement in carrier mobility at constant density, suggestive of melting
of the CDW correlations rather than excitation across an optical gap. The
relaxation displayed a temperature dependent, Arrhenius-like kinetics,
suggestive of the crossing of a free-energy barrier between two phases. These
results support the existence of short-range CDW correlations above Tc in
underdoped BaPb1-xBixO3, and provide new information on the dynamical interplay
between superconductivity and charge order.Comment: 19 pages, 4 figure
Mild behavioral impairment in Parkinson's disease: Data from the Parkinson's disease cognitive impairment study (PACOS)
Neuropsychiatric symptoms (NPS) have been frequently described in Parkinson's disease (PD), even in the earliest stages of the disease. Recently the construct of mild behavioral impairment (MBI) has been proposed as an at-risk state for incident cognitive decline and dementia. The aim of the present study is to evaluate the prevalence and associated factors of MBI in PD. Cross-sectional data from 429 consecutive PD patients enrolled in the PArkinson's disease COgnitive impairment Study (PACOS) were included in the study. All subjects underwent neuropsychological assessment, according to the MDS Level II criteria. NPS were evaluated with the Neuropsychiatric Inventory. Multivariate logistic regression models were used to evaluate clinical and behavioral characteristics, which are associated with PD-MBI. The latter was ascertained in 361 (84.1%) subjects of whom 155 (36.1%) were newly diagnosed patients (disease duration ≥1 year) and 206 (48.0%) had a disease duration <1 year. Furthermore, 68 (15.9%) out of 429 subjects were PDw (without MBI). Across the MBI domains, Impulse Dyscontrol was significantly more prevalent among PD-MBI with disease duration <1 year than newly diagnosed patients. The frequency of Social Inappropriateness and Abnormal Perception significantly increased throughout the entire PD-MBI sample with increasing Hoehn andYahr (H&Y) stages. PD-MBI in newly diagnosed PDwas significantly associated with H&Y stage (OR 2.35, 95% CI 1.05-5.24) and marginally with antidepressant drug use (OR 2.94, 95% CI 0.91-9.47), while in patients with a disease duration >1 year was associated with UPDRS-ME (OR 3.37, 95% CI 1.41-8.00). The overall MBI frequency in the PACOS sample was 84% and 36% among newly diagnosed patients. The presence of MBI mainly related to motor impairment and disability
Magnetic-Field Tuning of Light-Induced Superconductivity in Striped LaBaCuO
Optical excitation of stripe-ordered LaBaCuO has been shown
to transiently enhance superconducting tunneling between the CuO planes.
This effect was revealed by a blue-shift, or by the appearance of a Josephson
Plasma Resonance in the terahertz-frequency optical properties. Here, we show
that this photo-induced state can be strengthened by the application of high
external magnetic fields oriented along the c-axis. For a 7-Tesla field, we
observe up to a ten-fold enhancement in the transient interlayer phase
correlation length, accompanied by a two-fold increase in the relaxation time
of the photo-induced state. These observations are highly surprising, since
static magnetic fields suppress interlayer Josephson tunneling and stabilize
stripe order at equilibrium. We interpret our data as an indication that
optically-enhanced interlayer coupling in LaBaCuO does not
originate from a simple optical melting of stripes, as previously hypothesized.
Rather, we speculate that the photo-induced state may emerge from activated
tunneling between optically-excited stripes in adjacent planes.Comment: 35 pages, 13 figure
Infrared study of the charge-ordered multiferroic LuFe(2)O(4)
The reflectivity of a large LuFe(2)O(4) single crystal has been measured with
the radiation field either perpendicular or parallel to the c axis of its
rhombohedral structure, from 10 to 500K, and from 7 to 16000 cm-1. The
transition between the two-dimensional and the three-dimensional charge order
at T_(CO) = 320 K is found to change dramatically the phonon spectrum in both
polarizations. The number of the observed modes above and below T_(CO),
according to a factor-group analysis, is in good agreement with a transition
from the rhombohedral space group R{bar 3}m to the monoclinic C2/m. In the
sub-THz region a peak becomes evident at low temperature, whose origin is
discussed in relation with previous experiments.Comment: Physical Review B in pres
Excitation dependent Fano-like interference effects in plasmonic silver nanorods
Surface plasmon resonances in metal nanoparticles are an emerging technology platform for nano-optics applications from sensing to solar energy conversion. The electromagnetic near field associated with these resonances arises from modes determined by the shape, size, and composition of the metal nanoparticle. When coupled in the near field, multiple resonant modes can interact to give rise to interference effects offering fine control of both the spectral response and spatial distribution of fields near the particle. Here, we present an examination of experimental electron energy loss spectroscopy (EELS) of silver nanorod monomer surface plasmon modes and present an explanation of observed spatial amplitude modulation of the Fabry-Pérot resonance modes of these silver nanorods using electrodynamics simulations. For these simulations, we identify differences in spectral peak symmetry in light scattering and electron spectroscopies (EELS and cathodoluminescence) and analyze the distinct near-field responses of silver nanorods to plane-wave light and electron beam excitation in terms of a coupled oscillator model. Effects of properties of the material and the incident field are evaluated, and the spatially resolved EELS signals are shown to provide a signature for assessing Fano-like interference effects in silver nanorods. These findings outline key considerations and challenges for interpreting electron microscopy data on plasmonic nanoparticles for understanding nanoscale optics and for characterization and design of photonic devices.S.M.C. acknowledges support of a Gates Cambridge Scholarship. D.R. acknowledges support from the Royal Society's Newton International Fellowship scheme. We acknowledge the use of computing facilities provided by CamGrid. Parts of this work were also performed using the Darwin Supercomputer of the University of Cambridge High Performance Computing Service (http://www.hpc.cam.ac.uk/), provided by Dell Inc. using Strategic Research Infrastructure Funding from the Higher Education Funding Council for England and funding from the Science and Technology Facilities Council. We thank F.J. de la Peña for helpful discussions on the use of hyperspy. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (Grant No. FP7/2007-2013)/ERC Grant Agreement No. 291522-3DIMAGE. Data on rod “B” were acquired by one of us (D. Rossouw) with support of a NSERC Discovery Grant (G. A. Botton) at the Canadian Centre for Electron Microscopy, a national facility supported by NSERC and McMaster University. We thank G. A. Botton for access to data on rod “B” and for helpful comments on this manuscript. P.A.M. also acknowledges funding from the European Union's Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2)
Pump frequency resonances for light-induced incipient superconductivity in YBaCuO
Optical excitation in the cuprates has been shown to induce transient
superconducting correlations above the thermodynamic transition temperature,
, as evidenced by the terahertz frequency optical properties in the
non-equilibrium state. In YBaCuO this phenomenon has so far
been associated with the nonlinear excitation of certain lattice modes and the
creation of new crystal structures. In other compounds, like
LaBaCuO, similar effects were reported also for excitation at
near infrared frequencies, and were interpreted as a signature of the melting
of competing orders. However, to date it has not been possible to
systematically tune the pump frequency widely in any one compound, to
comprehensively compare the frequency dependent photo-susceptibility for this
phenomenon. Here, we make use of a newly developed optical parametric
amplifier, which generates widely tunable high intensity femtosecond pulses, to
excite YBaCuO throughout the entire optical spectrum (3 - 750
THz). In the far-infrared region (3 - 25 THz), signatures of non-equilibrium
superconductivity are induced only for excitation of the 16.4 THz and 19.2 THz
vibrational modes that drive -axis apical oxygen atomic positions. For
higher driving frequencies (25 - 750 THz), a second resonance is observed
around the charge transfer band edge at ~350 THz. These observations highlight
the importance of coupling to the electronic structure of the CuO planes,
either mediated by a phonon or by charge transfer.Comment: 47 pages, 21 figures, 2 table
Quasiparticle evolution and pseudogap formation in V2O3: An infrared spectroscopy study
The infrared conductivity of V2O3 is measured in the whole phase diagram.
Quasiparticles appear above the Neel temperature TN and eventually disappear
further enhancing the temperature, leading to a pseudogap in the optical
spectrum above 425 K. Our calculations demonstrate that this loss of coherence
can be explained only if the temperature dependence of lattice parameters is
considered. V2O3 is therefore effectively driven from the metallic to the
insulating side of the Mott transition as the temperature is increased.Comment: 5 pages, 3 figure
- …
