102 research outputs found
Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway
Six light-harvesting-2 complexes (LH2) from genetically modified
strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were
studied using static and ultrafast optical methods and resonance Raman
spectroscopy. These strains were engineered to incorporate carotenoids for
which the number of conjugated groups (N = NCC + NCO) varies from 9 to 15.
The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N =
10) and spheroidenone (N = 11), as well as longer-chain analogues including
spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in
Rhodospirillum rubrum. Measurements of the properties of the carotenoid first
singlet excited state (S1) in antennas from the Rb. sphaeroides set show that
carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species
and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a
energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥
13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a lightharvesting
supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is
manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2
housing the longest carotenoids
New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides
Light-harvesting complex 2 (LH2) from the
semi-aerobically grown purple phototrophic bacterium
Rhodobacter sphaeroides was studied using optical (static
and time-resolved) and resonance Raman spectroscopies.
This antenna complex comprises bacteriochlorophyll
(BChl) a and the carotenoid spheroidenone, a ketolated
derivative of spheroidene. The results indicate that the
spheroidenone-LH2 complex contains two spectral forms
of the carotenoid: (1) a minor, ‘‘blue’’ form with an S2
(11
Bu
?) spectral origin band at 522 nm, shifted from the
position in organic media simply by the high polarizability
of the binding site, and (2) the major, ‘‘red’’ form with the
origin band at 562 nm that is associated with a pool of
pigments that more strongly interact with protein residues,
most likely via hydrogen bonding. Application of targeted
modeling of excited-state decay pathways after carotenoid
excitation suggests that the high (92%) carotenoid-to-BChl
energy transfer efficiency in this LH2 system, relative to
LH2 complexes binding carotenoids with comparable
double-bond conjugation lengths, derives mainly from
resonance energy transfer from spheroidenone S2 (11
Bu
?)
state to BChl a via the Qx state of the latter, accounting for
60% of the total transfer. The elevated S2 (11
Bu
?) ? Qx
transfer efficiency is apparently associated with substantially
decreased energy gap (increased spectral overlap)
between the virtual S2 (11
Bu
?) ? S0 (11
Ag
-) carotenoid
emission and Qx absorption of BChl a. This reduced
energetic gap is the ultimate consequence of strong carotenoid–protein
interactions, including the inferred hydrogen
bondin
Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre.
Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP-RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (QX) absorption bands of the RC allow energy transfer via a Förster mechanism, with an efficiency of 40±10%. This proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis
The nature of singlet exciton fission in carotenoid aggregates.
Singlet exciton fission allows the fast and efficient generation of two spin triplet states from one photoexcited singlet. It has the potential to improve organic photovoltaics, enabling efficient coupling to the blue to ultraviolet region of the solar spectrum to capture the energy generally lost as waste heat. However, many questions remain about the underlying fission mechanism. The relation between intermolecular geometry and singlet fission rate and yield is poorly understood and remains one of the most significant barriers to the design of new singlet fission sensitizers. Here we explore the structure-property relationship and examine the mechanism of singlet fission in aggregates of astaxanthin, a small polyene. We isolate five distinct supramolecular structures of astaxanthin generated through self-assembly in solution. Each is capable of undergoing intermolecular singlet fission, with rates of triplet generation and annihilation that can be correlated with intermolecular coupling strength. In contrast with the conventional model of singlet fission in linear molecules, we demonstrate that no intermediate states are involved in the triplet formation: instead, singlet fission occurs directly from the initial 1B(u) photoexcited state on ultrafast time scales. This result demands a re-evaluation of current theories of polyene photophysics and highlights the robustness of carotenoid singlet fission.This work was supported by the EPSRC (UK) (EP/G060738/
1), the European Community (LASERLAB-EUROPE, grant
agreement no. 284464, EC’s Seventh Framework Programme;
and Marie-Curie ITN-SUPERIOR, PITN-GA-2009-238177),
and the Winton Programme for the Physics of Sustainability.
G.C. acknowledges support by the European Research Council
Advanced Grant STRATUS (ERC-2011-AdG No. 291198).
J.C. acknowledges support by the Royal Society Dorothy
Hodgkin Fellowship and The University of Sheffield’s Vice-
Chancellor’s Fellowship scheme.This is the final published version. It was first made available by ACS at http://pubs.acs.org/doi/abs/10.1021/jacs.5b01130
Engineering of B800 bacteriochlorophyll binding site specificity in the Rhodobacter sphaeroides LH2 antenna.
The light-harvesting 2 complex (LH2) of the purple phototrophic bacterium Rhodobacter sphaeroides is a highly efficient, light-harvesting antenna that allows growth under a wide-range of light intensities. In order to expand the spectral range of this antenna complex, we first used a series of competition assays to measure the capacity of the non-native pigments 3-acetyl chlorophyll (Chl) a, Chl d, Chl f or bacteriochlorophyll (BChl) b to replace native BChl a in the B800 binding site of LH2. We then adjusted the B800 site and systematically assessed the binding of non-native pigments. We find that Arg-10 of the LH2 β polypeptide plays a crucial role in binding specificity, by providing a hydrogen-bond to the 3-acetyl group of native and non-native pigments. Reconstituted LH2 complexes harbouring the series of (B)Chls were examined by transient absorption and steady-state fluorescence spectroscopies. Although slowed 10-fold to ~6 ps, energy transfer from Chl a to B850 BChl a remained highly efficient. We measured faster energy-transfer time constants for Chl d (3.5 ps) and Chl f (2.7 ps), which have red-shifted absorption maxima compared to Chl a. BChl b, red-shifted from the native BChl a, gave extremely rapid (≤0.1 ps) transfer. These results show that modified LH2 complexes, combined with engineered (B)Chl biosynthesis pathways in vivo, have potential for retaining high efficiency whilst acquiring increased spectral range
Structures of Rhodopseudomonas palustris RC-LH1 complexes with open or closed quinone channels
The reaction-center light-harvesting complex 1 (RC-LH1) is the core photosynthetic component in purple phototrophic bacteria. We present two cryo–electron microscopy structures of RC-LH1 complexes from Rhodopseudomonas palustris. A 2.65-Å resolution structure of the RC-LH114-W complex consists of an open 14-subunit LH1 ring surrounding the RC interrupted by protein-W, whereas the complex without protein-W at 2.80-Å resolution comprises an RC completely encircled by a closed, 16-subunit LH1 ring. Comparison of these structures provides insights into quinone dynamics within RC-LH1 complexes, including a previously unidentified conformational change upon quinone binding at the RC QB site, and the locations of accessory quinone binding sites that aid their delivery to the RC. The structurally unique protein-W prevents LH1 ring closure, creating a channel for accelerated quinone/quinol exchange
Degradation, Bioactivity, and Osteogenic Potential of Composites Made of PLGA and Two Different Sol–Gel Bioactive Glasses
We have developed poly(l-lactide-co-glycolide) (PLGA) based composites using sol–gel derived bioactive glasses (S-BG), previously described by our group, as composite components. Two different composite types were manufactured that contained either S2—high content silica S-BG, or A2—high content lime S-BG. The composites were evaluated in the form of sheets and 3D scaffolds. Sheets containing 12, 21, and 33 vol.% of each bioactive glass were characterized for mechanical properties, wettability, hydrolytic degradation, and surface bioactivity. Sheets containing A2 S-BG rapidly formed a hydroxyapatite surface layer after incubation in simulated body fluid. The incorporation of either S-BG increased the tensile strength and Young’s modulus of the composites and tailored their degradation rates compared to starting compounds. Sheets and 3D scaffolds were evaluated for their ability to support growth of human bone marrow cells (BMC) and MG-63 cells, respectively. Cells were grown in non-differentiating, osteogenic or osteoclast-inducing conditions. Osteogenesis was induced with either recombinant human BMP-2 or dexamethasone, and osteoclast formation with M-CSF. BMC viability was lower at higher S-BG content, though specific ALP/cell was significantly higher on PLGA/A2-33 composites. Composites containing S2 S-BG enhanced calcification of extracellular matrix by BMC, whereas incorporation of A2 S-BG in the composites promoted osteoclast formation from BMC. MG-63 osteoblast-like cells seeded in porous scaffolds containing S2 maintained viability and secreted collagen and calcium throughout the scaffolds. Overall, the presented data show functional versatility of the composites studied and indicate their potential to design a wide variety of implant materials differing in physico-chemical properties and biological applications. We propose these sol–gel derived bioactive glass–PLGA composites may prove excellent potential orthopedic and dental biomaterials supporting bone formation and remodeling
Carotenoid Distribution in Living Cells of Haematococcus pluvialis (Chlorophyceae)
Haematococcus pluvialis is a freshwater unicellular green microalga belonging to the class Chlorophyceae and is of commercial interest for its ability to accumulate massive amounts of the red ketocarotenoid astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione). Using confocal Raman microscopy and multivariate analysis, we demonstrate the ability to spectrally resolve resonance–enhanced Raman signatures associated with astaxanthin and β-carotene along with chlorophyll fluorescence. By mathematically isolating these spectral signatures, in turn, it is possible to locate these species independent of each other in living cells of H. pluvialis in various stages of the life cycle. Chlorophyll emission was found only in the chloroplast whereas astaxanthin was identified within globular and punctate regions of the cytoplasmic space. Moreover, we found evidence for β-carotene to be co-located with both the chloroplast and astaxanthin in the cytosol. These observations imply that β-carotene is a precursor for astaxanthin and the synthesis of astaxanthin occurs outside the chloroplast. Our work demonstrates the broad utility of confocal Raman microscopy to resolve spectral signatures of highly similar chromophores in living cells
- …
