992 research outputs found
Three-dimensional compressible stability-transition calculations using the spatial theory
The e(exp n)-method is employed with the spatial amplification theory to compute the onset of transition on a swept wing tested in transonic cryogenic flow conditions. Two separate eigenvalue formulations are used. One uses the saddle-point method and the other assumes that the amplification vector is normal to the leading edge. Comparisons of calculated results with experimental data show that both formulations give similar results and indicate that the wall temperature has a rather strong effect on the value of the n factor
Joint and individual analysis of breast cancer histologic images and genomic covariates
A key challenge in modern data analysis is understanding connections between
complex and differing modalities of data. For example, two of the main
approaches to the study of breast cancer are histopathology (analyzing visual
characteristics of tumors) and genetics. While histopathology is the gold
standard for diagnostics and there have been many recent breakthroughs in
genetics, there is little overlap between these two fields. We aim to bridge
this gap by developing methods based on Angle-based Joint and Individual
Variation Explained (AJIVE) to directly explore similarities and differences
between these two modalities. Our approach exploits Convolutional Neural
Networks (CNNs) as a powerful, automatic method for image feature extraction to
address some of the challenges presented by statistical analysis of
histopathology image data. CNNs raise issues of interpretability that we
address by developing novel methods to explore visual modes of variation
captured by statistical algorithms (e.g. PCA or AJIVE) applied to CNN features.
Our results provide many interpretable connections and contrasts between
histopathology and genetics
Passing to the Limit in a Wasserstein Gradient Flow: From Diffusion to Reaction
We study a singular-limit problem arising in the modelling of chemical
reactions. At finite {\epsilon} > 0, the system is described by a Fokker-Planck
convection-diffusion equation with a double-well convection potential. This
potential is scaled by 1/{\epsilon}, and in the limit {\epsilon} -> 0, the
solution concentrates onto the two wells, resulting into a limiting system that
is a pair of ordinary differential equations for the density at the two wells.
This convergence has been proved in Peletier, Savar\'e, and Veneroni, SIAM
Journal on Mathematical Analysis, 42(4):1805-1825, 2010, using the linear
structure of the equation. In this paper we re-prove the result by using solely
the Wasserstein gradient-flow structure of the system. In particular we make no
use of the linearity, nor of the fact that it is a second-order system. The
first key step in this approach is a reformulation of the equation as the
minimization of an action functional that captures the property of being a
curve of maximal slope in an integrated form. The second important step is a
rescaling of space. Using only the Wasserstein gradient-flow structure, we
prove that the sequence of rescaled solutions is pre-compact in an appropriate
topology. We then prove a Gamma-convergence result for the functional in this
topology, and we identify the limiting functional and the differential equation
that it represents. A consequence of these results is that solutions of the
{\epsilon}-problem converge to a solution of the limiting problem.Comment: Added two sections, corrected minor typos, updated reference
Pedestrians moving in dark: Balancing measures and playing games on lattices
We present two conceptually new modeling approaches aimed at describing the
motion of pedestrians in obscured corridors:
* a Becker-D\"{o}ring-type dynamics
* a probabilistic cellular automaton model.
In both models the group formation is affected by a threshold. The
pedestrians are supposed to have very limited knowledge about their current
position and their neighborhood; they can form groups up to a certain size and
they can leave them. Their main goal is to find the exit of the corridor.
Although being of mathematically different character, the discussion of both
models shows that it seems to be a disadvantage for the individual to adhere to
larger groups. We illustrate this effect numerically by solving both model
systems. Finally we list some of our main open questions and conjectures
Using the MitoB method to assess levels of reactive oxygen species in ecological studies of oxidative stress
In recent years evolutionary ecologists have become increasingly interested in the effects of reactive
oxygen species (ROS) on the life-histories of animals. ROS levels have mostly been inferred indirectly
due to the limitations of estimating ROS from in vitro methods. However, measuring ROS (hydrogen
peroxide, H2O2) content in vivo is now possible using the MitoB probe. Here, we extend and refine
the MitoB method to make it suitable for ecological studies of oxidative stress using the brown trout
Salmo trutta as model. The MitoB method allows an evaluation of H2O2 levels in living organisms over
a timescale from hours to days. The method is flexible with regard to the duration of exposure and
initial concentration of the MitoB probe, and there is no transfer of the MitoB probe between fish. H2O2
levels were consistent across subsamples of the same liver but differed between muscle subsamples
and between tissues of the same animal. The MitoB method provides a convenient method for
measuring ROS levels in living animals over a significant period of time. Given its wide range of possible
applications, it opens the opportunity to study the role of ROS in mediating life history trade-offs in
ecological settings
Dissecting Supervised Contrastive Learning
Minimizing cross-entropy over the softmax scores of a linear map composed
with a high-capacity encoder is arguably the most popular choice for training
neural networks on supervised learning tasks. However, recent works show that
one can directly optimize the encoder instead, to obtain equally (or even more)
discriminative representations via a supervised variant of a contrastive
objective. In this work, we address the question whether there are fundamental
differences in the sought-for representation geometry in the output space of
the encoder at minimal loss. Specifically, we prove, under mild assumptions,
that both losses attain their minimum once the representations of each class
collapse to the vertices of a regular simplex, inscribed in a hypersphere. We
provide empirical evidence that this configuration is attained in practice and
that reaching a close-to-optimal state typically indicates good generalization
performance. Yet, the two losses show remarkably different optimization
behavior. The number of iterations required to perfectly fit to data scales
superlinearly with the amount of randomly flipped labels for the supervised
contrastive loss. This is in contrast to the approximately linear scaling
previously reported for networks trained with cross-entropy.Comment: ICML 2021 camera ready versio
Determination of 2´-5´-Oligoadenylate Synthetase in Serum and Peripheral Blood Mononuclear Cells before and after Subcutaneous Application of Recombinant Interferon beta and gamma
Peer Reviewe
Effects of Hydrogen Peroxide on Wound Healing in Mice in Relation to Oxidative Damage
10.1371/journal.pone.0049215PLoS ONE711
Factors associated with diversity, quantity and zoonotic potential of ectoparasites on urban mice and voles
Wild rodents are important hosts for tick larvae but co-infestations with other mites and insects are largely neglected. Small rodents were trapped at four study sites in Berlin, Germany, to quantify their ectoparasite diversity. Host-specific, spatial and temporal occurrence of ectoparasites was determined to assess their influence on direct and indirect zoonotic risk due to mice and voles in an urban agglomeration. Rodent-associated arthropods were diverse, including 63 species observed on six host species with an overall prevalence of 99%. The tick Ixodes ricinus was the most prevalent species, found on 56% of the rodents. The trapping location clearly affected the presence of different rodent species and, therefore, the occurrence of particular host-specific parasites. In Berlin, fewer temporary and periodic parasite species as well as non-parasitic species (fleas, chiggers and nidicolous Gamasina) were detected than reported from rural areas. In addition, abundance of parasites with low host-specificity (ticks, fleas and chiggers) apparently decreased with increasing landscape fragmentation associated with a gradient of urbanisation. In contrast, stationary ectoparasites, closely adapted to the rodent host, such as the fur mites Myobiidae and Listrophoridae, were most abundant at the two urban sites. A direct zoonotic risk of infection for people may only be posed by Nosopsyllus fasciatus fleas, which were prevalent even in the city centre. More importantly, peridomestic rodents clearly supported the life cycle of ticks in the city as hosts for their subadult stages. In addition to trapping location, season, host species, body condition and host sex, infestation with fleas, gamasid Laelapidae mites and prostigmatic Myobiidae mites were associated with significantly altered abundance of I. ricinus larvae on mice and voles. Whether this is caused by predation, grooming behaviour or interaction with the host immune system is unclear. The present study constitutes a basis to identify interactions and vector function of rodent-associated arthropods and their potential impact on zoonotic diseases
- …
