1,329 research outputs found
Preroughening transitions in a model for Si and Ge (001) type crystal surfaces
The uniaxial structure of Si and Ge (001) facets leads to nontrivial
topological properties of steps and hence to interesting equilibrium phase
transitions. The disordered flat phase and the preroughening transition can be
stabilized without the need for step-step interactions. A model describing this
is studied numerically by transfer matrix type finite-size-scaling of interface
free energies. Its phase diagram contains a flat, rough, and disordered flat
phase, separated by roughening and preroughening transition lines. Our estimate
for the location of the multicritical point where the preroughening line merges
with the roughening line, predicts that Si and Ge (001) undergo preroughening
induced simultaneous deconstruction transitions.Comment: 13 pages, RevTex, 7 Postscript Figures, submitted to J. Phys.
Competitive reactions and the cross-sales effects of advertising and promotion.
Abstract: How do competitors react to each other's price-promotion and advertising actions? How do these reactions influence the net sales impact we observe? We answer these questions by performing a large-scale empirical study of the short-run and long-run reactions to promotion and advertising shocks in over 400 consumer product categories, over a four-year time span.Competitive reaction can be passive, accommodating or retaliatory. We first develop a series of expectations on the type and intensity of reaction behavior, and on the moderators of this behavior. These expectations are assessed in two ways. First, vector-autoregressive models quantify the short-run and long-run effect of a promotion or advertising action on competitive sales and on competitive reactions. By cataloging the numerical results, we are able to formulate empirical generalizations of reaction behavior ('how do they react?'). Second, we estimate structural models of reaction intensity, in function of various market and competitive characteristics ('what are the drivers of reaction?'). Finally, by comparing our findings on reaction behavior with those on promotion and advertising effectiveness, we are able to evaluate competitive reaction behavior ('are they reacting as they should?').A major finding is that competitive reaction is predominantly passive. When it is present, it is usually retaliatory in the same instrument, but accommodating or retaliatory in a different instrument. There are very few long-run consequences of any type of reaction behavior. We also report on several moderating effects that are in line with expectations, and that support the presence of a certain amount of rationality in competitive reaction behavior.The net impact of the over-time effects of advertising and price-promotion attacks, competitive reactions and the sales effectiveness of each, is that competitors' sales are generally not affected, and especially not in the long run. We weigh the evidence that this sales neutrality is 'natural' (i.e., due to the nature of consumer response) versus 'managed' (i.e., due to the vigilance and effectiveness of competitors), and conclude in favor of the former.
Crossover Scaling Functions in One Dimensional Dynamic Growth Models
The crossover from Edwards-Wilkinson () to KPZ () type growth is
studied for the BCSOS model. We calculate the exact numerical values for the
and massgap for using the master equation. We predict
the structure of the crossover scaling function and confirm numerically that
and , with . KPZ type growth is
equivalent to a phase transition in meso-scopic metallic rings where attractive
interactions destroy the persistent current; and to endpoints of facet-ridges
in equilibrium crystal shapes.Comment: 11 pages, TeX, figures upon reques
Muon spin rotation and relaxation in the superconducting ferromagnet UCoGe
We report zero-field muon spin rotation and relaxation measurements on the
superconducting ferromagnet UCoGe. Weak itinerant ferromagnetic order is
detected by a spontaneous muon spin precession frequency below the Curie
temperature K. The precession frequency persists below the
bulk superconducting transition temperature K, where it measures
a local magnetic field T. The amplitude of the SR signal
provides unambiguous proof for ferromagnetism present in the whole sample
volume. We conclude ferromagnetism coexists with superconductivity on the
microscopic scale.Comment: 4 pages, 3 figures, accepted for publication in PR
Reconstructed Rough Growing Interfaces; Ridgeline Trapping of Domain Walls
We investigate whether surface reconstruction order exists in stationary
growing states, at all length scales or only below a crossover length, . The later would be similar to surface roughness in growing crystal
surfaces; below the equilibrium roughening temperature they evolve in a
layer-by-layer mode within a crossover length scale , but are always
rough at large length scales. We investigate this issue in the context of KPZ
type dynamics and a checker board type reconstruction, using the restricted
solid-on-solid model with negative mono-atomic step energies. This is a
topology where surface reconstruction order is compatible with surface
roughness and where a so-called reconstructed rough phase exists in
equilibrium. We find that during growth, reconstruction order is absent in the
thermodynamic limit, but exists below a crossover length , and that this local order fluctuates critically. Domain walls become
trapped at the ridge lines of the rough surface, and thus the reconstruction
order fluctuations are slaved to the KPZ dynamics
An exact universal amplitude ratio for percolation
The universal amplitude ratio for percolation in two
dimensions is determined exactly using results for the dilute A model in regime
1, by way of a relationship with the q-state Potts model for q<4.Comment: 5 pages, LaTeX, submitted to J. Phys. A. One paragraph rewritten to
correct error
Temperature Dependence of Facet Ridges in Crystal Surfaces
The equilibrium crystal shape of a body-centered solid-on-solid (BCSOS) model
on a honeycomb lattice is studied numerically. We focus on the facet ridge
endpoints (FRE). These points are equivalent to one dimensional KPZ-type growth
in the exactly soluble square lattice BCSOS model. In our more general context
the transfer matrix is not stochastic at the FRE points, and a more complex
structure develops. We observe ridge lines sticking into the rough phase where
thesurface orientation jumps inside the rounded part of the crystal. Moreover,
the rough-to-faceted edges become first-order with a jump in surface
orientation, between the FRE point and Pokrovsky-Talapov (PT) type critical
endpoints. The latter display anisotropic scaling with exponent instead
of familiar PT value .Comment: 12 pages, 19 figure
One-dimensional spin-liquid without magnon excitations
It is shown that a sufficiently strong four-spin interaction in the spin-1/2
spin ladder can cause dimerization. Such interaction can be generated either by
phonons or (in the doped state) by the conventional Coulomb repulsion between
the holes. The dimerized phases are thermodynamically undistinguishable from
the Haldane phase, but have dramatically different correlation functions: the
dynamical magnetic susceptibility, instead of displaying a sharp single magnon
peak near , shows only a two-particle threshold separated from the
ground state by a gap.Comment: 9 pages, LaTex, to be published in Phys. Rev. Lett., vol. 78, May
199
Particle Dynamics in a Mass-Conserving Coalescence Process
We consider a fully asymmetric one-dimensional model with mass-conserving
coalescence. Particles of unit mass enter at one edge of the chain and
coalescence while performing a biased random walk towards the other edge where
they exit. The conserved particle mass acts as a passive scalar in the reaction
process , and allows an exact mapping to a restricted ballistic
surface deposition model for which exact results exist. In particular, the
mass- mass correlation function is exactly known. These results complement
earlier exact results for the process without mass. We introduce a
comprehensive scaling theory for this process. The exact anaytical and
numerical results confirm its validity.Comment: 5 pages, 6 figure
Impact of different levels of geographical disaggregation of wind and PV electricity generation in large energy system models: A case study for Austria
This paper assesses how different levels of geographical disaggregation of wind and photovoltaic energy resources could affect the outcomes of an energy system model by 2020 and 2050. Energy system models used for policy making typically have high technology detail but little spatial detail. However, the generation potential and integration costs of variable renewable energy sources and their time profile of production depend on geographic characteristics and infrastructure in place. For a case study for Austria we generate spatially highly resolved synthetic time series for potential production locations of wind power and PV. There are regional differences in the costs for wind turbines but not for PV. However, they are smaller than the cost reductions induced by technological learning from one modelled decade to the other. The wind availability shows significant regional differences where mainly the differences for summer days and winter nights are important. The solar availability for PV installations is more homogenous. We introduce these wind and PV data into the energy system model JRC-EU-TIMES with different levels of regional disaggregation. Results show that up to the point that the maximum potential is reached disaggregating wind regions significantly affects results causing lower electricity generation from wind and PV
- …
