1,040 research outputs found

    Violencia, memoria y convivencia: los judíos en el medioevo ibérico

    Get PDF

    On a non-isothermal model for nematic liquid crystals

    Full text link
    A model describing the evolution of a liquid crystal substance in the nematic phase is investigated in terms of three basic state variables: the {\it absolute temperature} \teta, the {\it velocity field} \ub, and the {\it director field} \bd, representing preferred orientation of molecules in a neighborhood of any point of a reference domain. The time evolution of the velocity field is governed by the incompressible Navier-Stokes system, with a non-isotropic stress tensor depending on the gradients of the velocity and of the director field \bd, where the transport (viscosity) coefficients vary with temperature. The dynamics of \bd is described by means of a parabolic equation of Ginzburg-Landau type, with a suitable penalization term to relax the constraint |\bd | = 1. The system is supplemented by a heat equation, where the heat flux is given by a variant of Fourier's law, depending also on the director field \bd. The proposed model is shown compatible with \emph{First and Second laws} of thermodynamics, and the existence of global-in-time weak solutions for the resulting PDE system is established, without any essential restriction on the size of the data

    Constructing solutions to the Bj\"orling problem for isothermic surfaces by structure preserving discretization

    Get PDF
    In this article, we study an analog of the Bj\"orling problem for isothermic surfaces (that are more general than minimal surfaces): given a real analytic curve γ\gamma in R3{\mathbb R}^3, and two analytic non-vanishing orthogonal vector fields vv and ww along γ\gamma, find an isothermic surface that is tangent to γ\gamma and that has vv and ww as principal directions of curvature. We prove that solutions to that problem can be obtained by constructing a family of discrete isothermic surfaces (in the sense of Bobenko and Pinkall) from data that is sampled along γ\gamma, and passing to the limit of vanishing mesh size. The proof relies on a rephrasing of the Gauss-Codazzi-system as analytic Cauchy problem and an in-depth-analysis of its discretization which is induced from the geometry of discrete isothermic surfaces. The discrete-to-continuous limit is carried out for the Christoffel and the Darboux transformations as well.Comment: 29 pages, some figure

    Breakdown of smoothness for the Muskat problem

    Get PDF
    In this paper we show that there exist analytic initial data in the stable regime for the Muskat problem such that the solution turns to the unstable regime and later breaks down i.e. no longer belongs to C4C^4.Comment: 93 pages, 10 figures (6 added

    Local and Global Analytic Solutions for a Class of Characteristic Problems of the Einstein Vacuum Equations in the "Double Null Foliation Gauge"

    Full text link
    The main goal of this work consists in showing that the analytic solutions for a class of characteristic problems for the Einstein vacuum equations have an existence region larger than the one provided by the Cauchy-Kowalevski theorem due to the intrinsic hyperbolicity of the Einstein equations. To prove this result we first describe a geometric way of writing the vacuum Einstein equations for the characteristic problems we are considering, in a gauge characterized by the introduction of a double null cone foliation of the spacetime. Then we prove that the existence region for the analytic solutions can be extended to a larger region which depends only on the validity of the apriori estimates for the Weyl equations, associated to the "Bel-Robinson norms". In particular if the initial data are sufficiently small we show that the analytic solution is global. Before showing how to extend the existence region we describe the same result in the case of the Burger equation, which, even if much simpler, nevertheless requires analogous logical steps required for the general proof. Due to length of this work, in this paper we mainly concentrate on the definition of the gauge we use and on writing in a "geometric" way the Einstein equations, then we show how the Cauchy-Kowalevski theorem is adapted to the characteristic problem for the Einstein equations and we describe how the existence region can be extended in the case of the Burger equation. Finally we describe the structure of the extension proof in the case of the Einstein equations. The technical parts of this last result is the content of a second paper.Comment: 68 page

    Critical points of Wang-Yau quasi-local energy

    Full text link
    In this paper, we prove the following theorem regarding the Wang-Yau quasi-local energy of a spacelike two-surface in a spacetime: Let Σ\Sigma be a boundary component of some compact, time-symmetric, spacelike hypersurface Ω\Omega in a time-oriented spacetime NN satisfying the dominant energy condition. Suppose the induced metric on Σ\Sigma has positive Gaussian curvature and all boundary components of Ω\Omega have positive mean curvature. Suppose HH0H \le H_0 where HH is the mean curvature of Σ\Sigma in Ω\Omega and H0H_0 is the mean curvature of Σ\Sigma when isometrically embedded in R3R^3. If Ω\Omega is not isometric to a domain in R3R^3, then 1. the Brown-York mass of Σ\Sigma in Ω\Omega is a strict local minimum of the Wang-Yau quasi-local energy of Σ\Sigma, 2. on a small perturbation Σ~\tilde{\Sigma} of Σ\Sigma in NN, there exists a critical point of the Wang-Yau quasi-local energy of Σ~\tilde{\Sigma}.Comment: substantially revised, main theorem replaced, Section 3 adde

    Absorbing boundary conditions for the Westervelt equation

    Full text link
    The focus of this work is on the construction of a family of nonlinear absorbing boundary conditions for the Westervelt equation in one and two space dimensions. The principal ingredient used in the design of such conditions is pseudo-differential calculus. This approach enables to develop high order boundary conditions in a consistent way which are typically more accurate than their low order analogs. Under the hypothesis of small initial data, we establish local well-posedness for the Westervelt equation with the absorbing boundary conditions. The performed numerical experiments illustrate the efficiency of the proposed boundary conditions for different regimes of wave propagation

    Time reversal in thermoacoustic tomography - an error estimate

    Full text link
    The time reversal method in thermoacoustic tomography is used for approximating the initial pressure inside a biological object using measurements of the pressure wave made on a surface surrounding the object. This article presents error estimates for the time reversal method in the cases of variable, non-trapping sound speeds.Comment: 16 pages, 6 figures, expanded "Remarks and Conclusions" section, added one figure, added reference

    The Topological B-model on a Mini-Supertwistor Space and Supersymmetric Bogomolny Monopole Equations

    Full text link
    In the recent paper hep-th/0502076, it was argued that the open topological B-model whose target space is a complex (2|4)-dimensional mini-supertwistor space with D3- and D1-branes added corresponds to a super Yang-Mills theory in three dimensions. Without the D1-branes, this topological B-model is equivalent to a dimensionally reduced holomorphic Chern-Simons theory. Identifying the latter with a holomorphic BF-type theory, we describe a twistor correspondence between this theory and a supersymmetric Bogomolny model on R^3. The connecting link in this correspondence is a partially holomorphic Chern-Simons theory on a Cauchy-Riemann supermanifold which is a real one-dimensional fibration over the mini-supertwistor space. Along the way of proving this twistor correspondence, we review the necessary basic geometric notions and construct action functionals for the involved theories. Furthermore, we discuss the geometric aspect of a recently proposed deformation of the mini-supertwistor space, which gives rise to mass terms in the supersymmetric Bogomolny equations. Eventually, we present solution generating techniques based on the developed twistorial description together with some examples and comment briefly on a twistor correspondence for super Yang-Mills theory in three dimensions.Comment: 55 pages; v2: typos fixed, published versio

    On geometric problems related to Brown-York and Liu-Yau quasilocal mass

    Full text link
    We discuss some geometric problems related to the definitions of quasilocal mass proposed by Brown-York \cite{BYmass1} \cite{BYmass2} and Liu-Yau \cite{LY1} \cite{LY2}. Our discussion consists of three parts. In the first part, we propose a new variational problem on compact manifolds with boundary, which is motivated by the study of Brown-York mass. We prove that critical points of this variation problem are exactly static metrics. In the second part, we derive a derivative formula for the Brown-York mass of a smooth family of closed 2 dimensional surfaces evolving in an ambient three dimensional manifold. As an interesting by-product, we are able to write the ADM mass \cite{ADM61} of an asymptotically flat 3-manifold as the sum of the Brown-York mass of a coordinate sphere SrS_r and an integral of the scalar curvature plus a geometrically constructed function Φ(x)\Phi(x) in the asymptotic region outside SrS_r . In the third part, we prove that for any closed, spacelike, 2-surface Σ\Sigma in the Minkowski space R3,1\R^{3,1} for which the Liu-Yau mass is defined, if Σ\Sigma bounds a compact spacelike hypersurface in R3,1\R^{3,1}, then the Liu-Yau mass of Σ\Sigma is strictly positive unless Σ\Sigma lies on a hyperplane. We also show that the examples given by \'{O} Murchadha, Szabados and Tod \cite{MST} are special cases of this result.Comment: 28 page
    corecore