4,041 research outputs found
Simple derivation of general Fierz-type identities
General Fierz-type identities are examined and their well known connection
with completeness relations in matrix vector spaces is shown. In particular, I
derive the chiral Fierz identities in a simple and systematic way by using a
chiral basis for the complex matrices. Other completeness relations
for the fundamental representations of SU(N) algebras can be extracted using
the same reasoning.Comment: 9pages. Few sentences modified in introduction and in conclusion.
Typos corrected. An example added in introduction. Title modifie
Formation and Disruption of Cosmological Low Mass Objects
We investigate the evolution of cosmological low mass (low virial
temperature) objects and the formation of the first luminous objects. First,
the `cooling diagram' for low mass objects is shown. We assess the cooling rate
taking into account the contribution of H_2, which is not in chemical
equilibrium generally, with a simple argument of time scales. The reaction
rates and the cooling rate of H_2 are taken from the recent results by Galli &
Palla (1998). Using this cooling diagram, we also estimate the formation
condition of luminous objects taking into account the supernova (SN) disruption
of virialized clouds. We find that the mass of the first luminous object is
several times 10^7 solar mass, because smaller objects may be disrupted by the
SNe before they become luminous. Metal pollution of low mass (Ly-alpha) clouds
also discussed. The resultant metallicity of the clouds is about 1/1000 of the
solar metallicity.Comment: 11 pages, 2 figures, To appear in ApJ
Fano-Kondo effect in a two-level system with triple quantum dots: shot noise characteristics
We theoretically compare transport properties of Fano-Kondo effect with those
of Fano effect. We focus on shot noise characteristics of a triple quantum dot
(QD) system in the Fano-Kondo region at zero temperature, and discuss the
effect of strong electric correlation in QDs. We found that the modulation of
the Fano dip is strongly affected by the on-site Coulomb interaction in QDs.Comment: 4 pages, 6figure
Axion Like Particles and the Inverse Seesaw Mechanism
Light pseudoscalars known as axion like particles (ALPs) may be behind
physical phenomena like the Universe transparency to ultra-energetic photons,
the soft -ray excess from the Coma cluster, and the 3.5 keV line. We
explore the connection of these particles with the inverse seesaw (ISS)
mechanism for neutrino mass generation. We propose a very restrictive setting
where the scalar field hosting the ALP is also responsible for generating the
ISS mass scales through its vacuum expectation value on gravity induced
nonrenormalizable operators. A discrete gauge symmetry protects the theory from
the appearance of overly strong gravitational effects and discrete anomaly
cancellation imposes strong constraints on the order of the group. The
anomalous U symmetry leading to the ALP is an extended lepton number and
the protective discrete symmetry can be always chosen as a subgroup of a
combination of the lepton number and the baryon number.Comment: 29pp. v4: published version with erratum. Conclusions unchange
Reactive nitrogen over the tropical western Pacific: Influence from lightning and biomass burning during BIBLE A
Self-Regulation of Star Formation in Low Metallicity Clouds
We investigate the process of self-regulated star formation via
photodissociation of hydrogen molecules in low metallicity clouds. We evaluate
the influence region's scale of a massive star in low metallicity gas clouds
whose temperatures are between 100 and 10000 Kelvin. A single O star can
photodissociate hydrogen molecules in the whole of the host cloud. If
metallicity is smaller than about 10^{-2.5} of the solar metallicity, the
depletion of coolant of the the host cloud is very serious so that the cloud
cannot cool in a free-fall time, and subsequent star formation is almost
quenched. On the contrary, if metallicity is larger than about 10^{-1.5} of the
solar metallicity, star formation regulation via photodissociation is not
efficient. The typical metallicity when this transition occurs is about 1/100
of the solar metallicity. This indicates that stars do not form efficiently
before the metallicity becomes larger than about 1/100 of the solar metallicity
and we considered that this value becomes the lower limit of the metallicity of
luminous objects such as galaxies.Comment: 14 pages, including 5 figures, To appear in ApJ, Vol. 53
Recommended from our members
Measurements of reactive nitrogen produced by tropical thunderstorms during BIBLE-C
The Biomass Burning and Lightning Experiment phase C (BIBLE-C) aircraft mission was carried out near Darwin, Australia (12°S, 131°E) in December 2000. This was the first aircraft experiment designed to estimate lightning NO production rates in the tropics, where production is considered to be most intense. During the two flights (flights 10 and 13 made on December 9 and 11-12, respectively) enhancements of NOx (NO + NO2) up to 1000 and 1600 parts per trillion by volume (pptv, 10-s data) were observed at altitudes between 11.5 and 14 km. The Geostationary Meteorological Satellite (GMS) cloud (brightness temperature) data and ground-based lightning measurements by the Global Positioning and Tracking System (GPATS) indicate that there were intensive lightning events over the coast of the Gulf of Carpentaria, which took place upstream from our measurement area 10 to 14 h prior to the measurements. For these two flights, air in which NOx exceeded 100 pptv extended over 620 × 140 and 400 × 170 km2 (wind direction x perpendicular direction), respectively, suggesting a significant impact of lightning NO production on NOx levels in the tropics. We estimate the amount of NOx observed between 11.5 and 14 km produced by the thunderstorms to be 3.3 and 1.8 × 1025 NO molecules for flights 10 and 13, respectively. By using the GPATS lightning flash count data, column NO production rates are estimated to be 1.9-4.4 and 21-49 × 1025 NO molecules per single flash for these two flight data sets. In these estimations, it is assumed that the column NO production between 0 and 16 km is greater than the observed values between 11.5 and 14 km by a factor of 3.2, which is derived using results reported by Pickering et al. (1998). There are however large uncertainties in the GPATS lightning data in this study and care must be made when the production rates are referred. Uncertainties in these estimates are discussed. The impact on the ozone production rate is also described. Copyright 2007 by the American Geophysical Union
Formation of Primordial Protostars
The evolution of collapsing metal free protostellar clouds is investigated
for various masses and initial conditions.
We perform hydrodynamical calculations for spherically symmetric clouds
taking account of radiative transfer of the molecular hydrogen lines and the
continuum, as well as of chemistry of the molecular hydrogen.
The collapse is found to proceed almost self-similarly like Larson-Penston
similarity solution.
In the course of the collapse, efficient three-body processes transform
atomic hydrogen in an inner region of \sim 1 M_{\sun} entirely into molecular
form.
However, hydrogen in the outer part remains totally atomic although there is
an intervening transitional layer of several solar masses, where hydrogen is in
partially molecular form.
No opaque transient core is formed although clouds become optically thick to
H collision-induced absorption continuum, since H dissociation
follows successively.
When the central part of the cloud reaches stellar densities (), a very small hydrostatic core (\sim
5 \times 10^{-3} M_{\sun}) is formed and subsequently grows in mass as the
ambient gas accretes onto it.
The mass accretion rate is estimated to be 3.7 \times 10^{-2} M_{\sun}
{\rm yr^{-1}} (M_{\ast}/M_{\sun})^{-0.37}, where is instantaneous
mass of the central core, by using a similarity solution which reproduces the
evolution of the cloud before the core formation.Comment: 20 pages, 5 Postscript figures, uses AAS LaTe
Quaternionic potentials in non-relativistic quantum mechanics
We discuss the Schrodinger equation in presence of quaternionic potentials.
The study is performed analytically as long as it proves possible, when not, we
resort to numerical calculations. The results obtained could be useful to
investigate an underlying quaternionic quantum dynamics in particle physics.
Experimental tests and proposals to observe quaternionic quantum effects by
neutron interferometry are briefly reviewed.Comment: 21 pages, 16 figures (ps), AMS-Te
- …
