311 research outputs found
Tunneling into and between helical edge states - fermionic approach
We study four-terminal junction of spinless Luttinger liquid wires, which
describes either a corner junction of two helical edges states of topological
insulators or the tunneling from the spinful wire into the helical edge state.
We use the fermionic representation and the scattering state formalism, in
order to compute the renormalization group (RG) equations for the linear
response conductances. We establish our approach by considering a junction
between two possibly non-equivalent helical edge states and find an agreement
with the earlier analysis of this situation. Tunneling from the tip of the
spinful wire to the edge state is further analyzed which requires some
modification of our formalism. In the latter case we demonstrate i) the
existence of both fixed lines and conventional fixed points of RG equations,
and ii) certain proportionality relations holding for conductances during
renormalization. The scaling exponents and phase portraits are obtained in all
cases.Comment: 10 pages, 6 figure
Motivation as a factor in the development of the capacity of the students in higher technical education
Рассматривается сущность человеческого потенциала, обобщаются материалы изучения мотивации будущих инженеров.The essence of human potential, summarizes the papers examine the motivations of future engineers
Photoproduction of phi(1020) mesons on the proton at large momentum transfer
The cross section for meson photoproduction on the proton has been
measured for the first time up to a four-momentum transfer -t = 4 GeV^2, using
the CLAS detector at the Thomas Jefferson National Accelerator Facility. At low
four-momentum transfer, the differential cross section is well described by
Pomeron exchange. At large four-momentum transfer, above -t = 1.8 GeV^2, the
data support a model where the Pomeron is resolved into its simplest component,
two gluons, which may couple to any quark in the proton and in the .Comment: 5 pages; 7 figure
Measurement of the Polarized Structure Function for in the Resonance Region
The polarized longitudinal-transverse structure function
has been measured using the reaction in the
resonance region at and 0.65 GeV. No previous
data exist for this reaction channel. The kinematically
complete experiment was performed at Jefferson Lab with the CEBAF Large
Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at an
energy of 1.515 GeV. A partial wave analysis of the data shows generally better
agreement with recent phenomenological models of pion electroproduction
compared to the previously measured channel. A fit to both
and channels using a unitary isobar model suggests the unitarized
Born terms provide a consistent description of the non-resonant background. The
-channel pion pole term is important in the channel through a
rescattering correction, which could be model-dependent.Comment: 6 pages, LaTex, 5 eps figures: Submitted to PRC/Brief Reports v2:
Updated referenc
Measurement of Inclusive Spin Structure Functions of the Deuteron
We report the results of a new measurement of spin structure functions of the
deuteron in the region of moderate momentum transfer ( = 0.27 -- 1.3
(GeV/c)) and final hadronic state mass in the nucleon resonance region (
= 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam
at Jefferson Lab off a dynamically polarized cryogenic solid state target
(ND) and detected the scattered electrons with the CEBAF Large
Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal
double spin asymmetry and the spin structure function . Our
data are generally in reasonable agreement with existing data from SLAC where
they overlap, and they represent a substantial improvement in statistical
precision. We compare our results with expectations for resonance asymmetries
and extrapolated deep inelastic scaling results. Finally, we evaluate the first
moment of the structure function and study its approach to both the
deep inelastic limit at large and to the Gerasimov-Drell-Hearn sum rule
at the real photon limit (). We find that the first moment varies
rapidly in the range of our experiment and crosses zero at between
0.5 and 0.8 (GeV/c), indicating the importance of the resonance at
these momentum transfers.Comment: 13 pages, 8 figures, ReVTeX 4, final version as accepted by Phys.
Rev.
Q^2 Dependence of the S_{11}(1535) Photocoupling and Evidence for a P-wave resonance in eta electroproduction
New cross sections for the reaction are reported for total
center of mass energy =1.5--2.3 GeV and invariant squared momentum transfer
=0.13--3.3 GeV. This large kinematic range allows extraction of new
information about response functions, photocouplings, and coupling
strengths of baryon resonances. A sharp structure is seen at 1.7 GeV.
The shape of the differential cross section is indicative of the presence of a
-wave resonance that persists to high . Improved values are derived for
the photon coupling amplitude for the (1535) resonance. The new data
greatly expands the range covered and an interpretation of all data with
a consistent parameterization is provided.Comment: 31 pages, 9 figure
Observation of exclusive DVCS in polarized electron beam asymmetry measurements
We report the first results of the beam spin asymmetry measured in the
reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry
with a sin(phi) modulation is observed, as predicted for the interference term
of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The
amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and
leading-twist pQCD, the alpha is directly proportional to the imaginary part of
the DVCS amplitude.Comment: 6 pages, 5 figure
- …
