1,676 research outputs found
BLAME IT ON THE WEATHER: COST AND DESIGN OF MANURE MANAGEMENT UNDER EXTREME WEATHER CONDITIONS ON NORTH CAROLINA SWINE FARMS
The majority of pig farms in North Carolina use a lagoon-sprayfield system to manage manure. Although economical, the lagoon-sprayfield system is sensitive to weather conditions. This study examines the cost of manure management under extreme weather and scrutinizes National Resource Conservation Service (NRCS) design criteria and regulations.Farm Management,
Fiscal year 1981 US corn and soybeans pilot preliminary experiment plan, phase 1
A draft of the preliminary experiment plan for the foreign commodity production forecasting project fiscal year 1981 is presented. This draft plan includes: definition of the phase 1 and 2 U.S. pilot objectives; the proposed experiment design to evaluate crop calendar, area estimation, and area aggregation components for corn and soybean technologies using 1978/1979 crop-year data; a description of individual sensitivity evaluations of the baseline corn and soybean segment classification procedure; and technology and data assessment in support of the corn and soybean estimation technology for use in the U.S. central corn belt
Hyperoxia Causes Mitochondrial Fragmentation in Pulmonary Endothelial Cells by Increasing Expression of Pro-Fission Proteins
Objective—We explored mechanisms that alter mitochondrial structure and function in pulmonary endothelial cells (PEC) function after hyperoxia. Approach and Results—Mitochondrial structures of PECs exposed to hyperoxia or normoxia were visualized and mitochondrial fragmentation quantified. Expression of pro-fission or fusion proteins or autophagy-related proteins were assessed by Western blot. Mitochondrial oxidative state was determined using mito-roGFP. Tetramethylrhodamine methyl ester estimated mitochondrial polarization in treatment groups. The role of mitochondrially derived reactive oxygen species in mt-fragmentation was investigated with mito-TEMPOL and mitochondrial DNA (mtDNA) damage studied by using ENDO III (mt-tat-endonuclease III), a protein that repairs mDNA damage. Drp-1 (dynamin-related protein 1) was overexpressed or silenced to test the role of this protein in cell survival or transwell resistance. Hyperoxia increased fragmentation of PEC mitochondria in a time-dependent manner through 48 hours of exposure. Hyperoxic PECs exhibited increased phosphorylation of Drp-1 (serine 616), decreases in Mfn1 (mitofusion protein 1), but increases in OPA-1 (optic atrophy 1). Pro-autophagy proteins p62 (LC3 adapter–binding protein SQSTM1/p62), PINK-1 (PTEN-induced putative kinase 1), and LC3B (microtubule-associated protein 1A/1B-light chain 3) were increased. Returning cells to normoxia for 24 hours reversed the increased mt-fragmentation and changes in expression of pro-fission proteins. Hyperoxia-induced changes in mitochondrial structure or cell survival were mitigated by antioxidants mito-TEMPOL, Drp-1 silencing, or inhibition or protection by the mitochondrial endonuclease ENDO III. Hyperoxia induced oxidation and mitochondrial depolarization and impaired transwell resistance. Decrease in resistance was mitigated by mito-TEMPOL or ENDO III and reproduced by overexpression of Drp-1. Conclusions—Because hyperoxia evoked mt-fragmentation, cell survival and transwell resistance are prevented by ENDO III and mito-TEMPOL and Drp-1 silencing, and these data link hyperoxia-induced mt-DNA damage, Drp-1 expression, mt-fragmentation, and PEC dysfunction
Advanced stratified charge rotary aircraft engine design study
A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage
Dynamical Stability and Habitability of Gamma Cephei Binary-Planetary System
It has been suggested that the long-lived residual radial velocity variations
observed in the precision radial velocity measurements of the primary of Gamma
Cephei (HR8974, HD222404, HIP116727) are likely due to a Jupiter-like planet
around this star (Hatzes et al, 2003). In this paper, the orbital dynamics of
this plant is studied and also the possibility of the existence of a
hypothetical Earth-like planet in the habitable zone of its central star is
discussed. Simulations, which have been carried out for different values of the
eccentricity and semimajor axis of the binary, as well as the orbital
inclination of its Jupiter-like planet, expand on previous studies of this
system and indicate that, for the values of the binary eccentricity smaller
than 0.5, and for all values of the orbital inclination of the Jupiter-like
planet ranging from 0 to 40 degrees, the orbit of this planet is stable. For
larger values of the binary eccentricity, the system becomes gradually
unstable. Integrations also indicate that, within this range of orbital
parameters, a hypothetical Earth-like planet can have a long-term stable orbit
only at distances of 0.3 to 0.8 AU from the primary star. The habitable zone of
the primary, at a range of approximately 3.1 to 3.8 AU, is, however, unstable.Comment: 25 pages, 7 figures, 3 tables, submitted for publicatio
Exploring the potential of a hybrid device combining solar water heating and molecular solar thermal energy storage
A hybrid solar energy system consisting of a molecular solar
thermal energy storage system (MOST) combined with a solar water
heating system (SWH) is presented. The MOST chemical energy
storage system is based on norbornadiene–quadricyclane derivatives
allowing for conversion of solar energy into stored chemical
energy at up to 103 kJ mol1 (396 kJ kg1
). It is demonstrated
that 1.1% of incoming solar energy can be stored in the chemical
system without significantly compromising the efficiency of the
solar water heating system, leading to efficiencies of combined
solar water heating and solar energy storage of up to 80%. Moreover,
prospects for future improvement and possible applications
are discussed
Pathotypic diversity of Hyaloperonospora brassicae collected from Brassica oleracea
Downy mildew caused by Hyaloperonospora brassicae is an economically destructive disease of brassica crops in many growing regions throughout the world. Specialised pathogenicity of downy mildews from different Brassica species and closely related ornamental or wild relatives has been described from host range studies. Pathotypic variation amongst Hyaloperonospora brassicae isolates from Brassica oleracea has also been described; however, a standard set of B. oleracea lines that could enable reproducible classification of H. brassicae pathotypes was poorly developed. For this purpose, we examined the use of eight genetically refined host lines derived from our previous collaborative work on downy mildew resistance as a differential set to characterise pathotypes in the European population of H. brassicae. Interaction phenotypes for each combination of isolate and host line were assessed following drop inoculation of cotyledons and a spectrum of seven phenotypes was observed based on the level of sporulation on cotyledons and visible host responses. Two host lines were resistant or moderately resistant to the entire collection of isolates, and another was universally susceptible. Five lines showed differential responses to the H. brassicae isolates. A minimum of six pathotypes and five major effect resistance genes are proposed to explain all of the observed interaction phenotypes. The B. oleracea lines from this study can be useful for monitoring pathotype frequencies in H. brassicae populations in the same or other vegetable growing regions, and to assess the potential durability of disease control from different combinations of the predicted downy mildew resistance genes
Parkinson disease-linked Vps35 R524W mutation impairs the endosomal association of retromer and induces α-synuclein aggregation
Endosomal sorting is a highly orchestrated cellular process. Retromer is a heterotrimeric complex that associates with endosomal membranes and facilitates the retrograde sorting of multiple receptors, including the cation-independent mannose 6-phosphate receptor for lysosomal enzymes. The cycling of retromer on and off the endosomal membrane is regulated by a network of retromer-interacting proteins. Here, we find that Parkinson disease-associated Vps35 variant, R524W, but not P316S, is a loss-of-function mutation as marked by a reduced association with this regulatory network and dysregulation of endosomal receptor sorting. Expression of Vps35 R524W-containing retromer results in the accumulation of intracellular α-synuclein-positive aggregates, a hallmark of Parkinson disease. Overall, the Vps35 R524W-containing retromer has a decreased endosomal association, which can be partially rescued by R55, a small molecule previously shown to stabilize the retromer complex, supporting the potential for future targeting of the retromer complex in the treatment of Parkinson disease
- …
