1,656 research outputs found

    Automated water monitor system field demonstration test report. Volume 1: Executive summary

    Get PDF
    A system that performs water quality monitoring on-line and in real time much as it would be done in a spacecraft, was developed and demonstrated. The system has the capability to determine conformance to high effluent quality standards and to increase the potential for reclamation and reuse of water

    Automated water monitor system field demonstration test report. Volume 2: Technical summary

    Get PDF
    The NASA Automatic Water Monitor System was installed in a water reclamation facility to evaluate the technical and cost feasibility of producing high quality reclaimed water. Data gathered during this field demonstration test are reported

    Magnetic properties of PdAs2O6: a dilute spin system with an unusually high N\'eel temperature

    Full text link
    The crystal structure and magnetic ordering pattern of PdAs2O6 were investigated by neutron powder diffraction. While the magnetic structure of PdAs2O6 is identical to the one of its isostructural 3d-homologue NiAs2O6, its N\'{e}el temperature (140 K) is much higher than the one of NiAs2O6 (30 K). This is surprising in view of the long distance and indirect exchange path between the magnetic Pd2+^{2+} ions. Density functional calculations yield insight into the electronic structure and the geometry of the exchange-bond network of both PdAs2O6 and NiAs2O6, and provide a semi-quantitative explanation of the large amplitude difference between their primary exchange interaction parameters

    Optical Hall Effect in the Integer Quantum Hall Regime

    Full text link
    Optical Hall conductivity σxy(ω)\sigma_{xy}(\omega) is measured from the Faraday rotation for a GaAs/AlGaAs heterojunction quantum Hall system in the terahertz frequency regime. The Faraday rotation angle (\sim fine structure constant \sim mrad) is found to significantly deviate from the Drude-like behavior to exhibit a plateau-like structure around the Landau-level filling ν=2\nu=2. The result, which fits with the behavior expected from the carrier localization effect in the ac regime, indicates that the plateau structure, although not quantized, still exists in the terahertz regime.Comment: 4 pages, 4 figure

    Theory of Thermal Conductivity in YBa_2Cu_3O_{7-\delta}

    Full text link
    We calculate the electronic thermal conductivity in a d-wave superconductor, including both the effect of impurity scattering and inelastic scattering by antiferromagnetic spin fluctuations. We analyze existing experiments, particularly with regard to the question of the relative importance of electronic and phononic contributions to the heat current, and to the influence of disorder on low-temperature properties. We find that phonons dominate heat transport near T_c, but that electrons are responsible for most of the peak observed in clean samples, in agreement with a recent analysis of Krishana et al. In agreement with recent data on YBa_2(Cu_1-xZn_x)_3O_7-\delta the peak position is found to vary nonmonotonically with disorder.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let

    c-axis electrodynamics of ybco

    Full text link
    New measurements of surface impedance in ybco show that the c-axis penetration depth and conductivity below Tc exhibit behaviour different from that observed in the planes. The c-axis penetration depth never has the linear temperature dependence seen in the ab-plane. Instead of the conductivity peak seen in the planes, the c-axis microwave conductivity falls to low values in the superconducting state, then rises slightly below 20K. These results show that c-axis transport remains incoherent below Tc, even though this is one of the least anisotropic cuprate superconductors.Comment: 4-page

    Structural stability of Fe5Si3 and Ni2Si studied by high-pressure x-ray diffraction and ab initio total-energy calculations

    Full text link
    We performed high-pressure angle dispersive x-ray diffraction measurements on Fe5Si3 and Ni2Si up to 75 GPa. Both materials were synthesized in bulk quantities via a solid-state reaction. In the pressure range covered by the experiments, no evidence of the occurrence of phase transitions was observed. On top of that, Fe5Si3 was found to compress isotropically, whereas an anisotropic compression was observed in Ni2Si. The linear incompressibility of Ni2Si along the c-axis is similar in magnitude to the linear incompressibility of diamond. This fact is related to the higher valence-electron charge density of Ni2Si along the c-axis. The observed anisotropic compression of Ni2Si is also related to the layered structure of Ni2Si where hexagonal layers of Ni2+ cations alternate with graphite-like layers formed by (NiSi)2- entities. The experimental results are supported by ab initio total-energy calculations carried out using density functional theory and the pseudopotential method. For Fe5Si3, the calculations also predicted a phase transition at 283 GPa from the hexagonal P63/mcm phase to the cubic structure adopted by Fe and Si in the garnet Fe5Si3O12. The room-temperature equations of state for Fe5Si3 and Ni2Si are also reported and a possible correlation between the bulk modulus of iron silicides and the coordination number of their minority element is discussed. Finally, we report novel descriptions of these structures, in particular of the predicted high-pressure phase of Fe5Si3 (the cation subarray in the garnet Fe5Si3O12), which can be derived from spinel Fe2SiO4 (Fe6Si3O12).Comment: 44 pages, 13 figures, 3 Table

    Quasiparticle-quasiparticle Scattering in High Tc Superconductors

    Full text link
    The quasiparticle lifetime and the related transport relaxation times are the fundamental quantities which must be known in order to obtain a description of the transport properties of the high T_c superconductors. Studies of these quantities have been undertaken previously for the d-wave, high T_c superconductors for the case of temperature-independent elastic impurity scattering. However, much less is known about the temperature-dependent inelastic scattering. Here we give a detailed description of the characteristics of the temperature-dependent quasiparticle-quasiparticle scattering in d-wave superconductors, and find that this process gives a natural explanation of the rapid variation with temperature of the electrical transport relaxation rate.Comment: 4 page
    corecore