6,288 research outputs found
Characteristic of x-ray tomography performance using CdTe timepix detector
X-ray Computed Tomography (CT) is a non-destructive technique for visualizing interior features within solid objects, and for obtaining digital information on their 3-D geometries and properties. The selection of CdTe Timepix detector has a sufficient performance of imaging detector is based on quality of detector performance and energy resolution. The study of Modulation Transfer Function (MTF) shows a 70% contrast at 4 lp/mm was achieved for the 55 µm pixel pitch detector with the 60 kVp X-ray tube and 5 keV noise level. No significant degradation in performance was observed for X-ray tube energies of 20 – 60 keV. The paper discusses the application of the CdTe Timepix detector to produce a good quality image of X-ray tomography imaging
Protostellar Feedback Processes and the Mass of the First Stars
We review theoretical models of Population III.1 star formation, focusing on
the protostellar feedback processes that are expected to terminate accretion
and thus set the mass of these stars. We discuss how dark matter annihilation
may modify this standard feedback scenario. Then, under the assumption that
dark matter annihilation is unimportant, we predict the mass of stars forming
in 12 cosmological minihalos produced in independent numerical simulations.
This allows us to make a simple estimate of the Pop III.1 initial mass function
and how it may evolve with redshift.Comment: 6 pages, Proceedings of 'The First Stars and Galaxies: Challenges for
the Next Decade", Austin, TX, March 8-11, 201
Exploring transmission Kikuchi diffraction using a Timepix detector
Electron backscatter diffraction (EBSD) is a well-established scanning electron microscope (SEM)-based technique [1]. It allows the non-destructive mapping of the crystal structure, texture, crystal phase and strain with a spatial resolution of tens of nanometers. Conventionally this is performed by placing an electron sensitive screen, typically consisting of a phosphor screen combined with a charge coupled device (CCD) camera, in front of a specimen, usually tilted 70° to the normal of the exciting electron beam. Recently, a number of authors have shown that a significant increase in spatial resolution is achievable when Kikuchi diffraction patterns are acquired in transmission geometry; that is when diffraction patterns are generated by electrons transmitted through an electron-transparent, usually thinned, specimen. The resolution of this technique, called transmission Kikuchi diffraction (TKD), has been demonstrated to be better than 10 nm [2,3]. We have recently demonstrated the advantages of a direct electron detector, Timepix [4,5], for the acquisition of standard EBSD patterns [5]. In this article we will discuss the advantages of Timepix to perform TKD and for acquiring spot diffraction patterns and more generally for acquiring scanning transmission electron microscopy micrographs in the SEM. Particularly relevant for TKD, is its very compact size, which allows much more flexibility in the positioning of the detector in the SEM chamber. We will furthermore show recent results using Timepix as a virtual forward scatter detector, and will illustrate the information derivable on producing images through processing of data acquired from different areas of the detector. We will show results from samples ranging from gold nanoparticles to nitride semiconductor nanorods
Propagating waves in polar coronal holes as seen by SUMER and EIS
To study the dynamics of coronal holes and the role of waves in the
acceleration of the solar wind, spectral observations were performed over polar
coronal hole regions with the SUMER spectrometer on SoHO and the EIS
spectrometer on Hinode. Using these observations, we aim to detect the presence
of propagating waves in the corona and to study their properties. The
observations analysed here consist of SUMER spectra of the Ne VIII 770 A line
(T = 0.6 MK) and EIS slot images in the Fe XII 195 A line (T = 1.3 MK). Using
the wavelet technique, we study line radiance oscillations at different heights
from the limb in the polar coronal hole regions. We detect the presence of long
period oscillations with periods of 10 to 30 min in polar coronal holes. The
oscillations have an amplitude of a few percent in radiance and are not
detectable in line-of-sight velocity. From the time distance maps we find
evidence for propagating velocities from 75 km/s (Ne VIII) to 125 km/s (Fe
XII). These velocities are subsonic and roughly in the same ratio as the
respective sound speeds. We interpret the observed propagating oscillations in
terms of slow magneto-acoustic waves. These waves can be important for the
acceleration of the fast solar wind.Comment: 5 pages, 7 figures Accepted as Astronomy and Astrophysics Lette
Galaxy Cluster Radio Relics in Adaptive Mesh Refinement Cosmological Simulations: Relic Properties and Scaling Relationships
Cosmological shocks are a critical part of large-scale structure formation,
and are responsible for heating the intracluster medium in galaxy clusters. In
addition, they are also capable of accelerating non-thermal electrons and
protons. In this work, we focus on the acceleration of electrons at shock
fronts, which is thought to be responsible for radio relics - extended radio
features in the vicinity of merging galaxy clusters. By combining high
resolution AMR/N-body cosmological simulations with an accurate shock finding
algorithm and a model for electron acceleration, we calculate the expected
synchrotron emission resulting from cosmological structure formation. We
produce synthetic radio maps of a large sample of galaxy clusters and present
luminosity functions and scaling relationships. With upcoming long wavelength
radio telescopes, we expect to see an abundance of radio emission associated
with merger shocks in the intracluster medium. By producing observationally
motivated statistics, we provide predictions that can be compared with
observations to further improve our understanding of magnetic fields and
electron shock acceleration.Comment: 20 pages, 15 figures, further discussion and appendix added, accepted
to Ap
Demonstration of single-shot picosecond time-resolved MeV electron imaging using a compact permanent magnet quadrupole based lens
We present the results of an experiment where a short focal length (~ 1.3 cm)
permanent magnet electron lens is used to image micron-size features of a metal
sample in a single shot, using an ultra- high brightness ps-long 4 MeV electron
beam from a radiofrequency photoinjector. Magnifcation ratios in excess of 30x
were obtained using a triplet of compact, small gap (3.5 mm), Halbach-style
permanent magnet quadrupoles with nearly 600 T/m field gradients. These results
pave the way to- wards single shot time-resolved electron microscopy and open
new opportunities in the applications of high brightness electron beams.Comment: 5 pages, 6 figure
- …
