15,839 research outputs found
Radon--Nikodym representations of Cuntz--Krieger algebras and Lyapunov spectra for KMS states
We study relations between --KMS states on Cuntz--Krieger algebras
and the dual of the Perron--Frobenius operator .
Generalising the well--studied purely hyperbolic situation, we obtain under
mild conditions that for an expansive dynamical system there is a one--one
correspondence between --KMS states and eigenmeasures of
for the eigenvalue 1. We then consider
representations of Cuntz--Krieger algebras which are induced by Markov fibred
systems, and show that if the associated incidence matrix is irreducible then
these are --isomorphic to the given Cuntz--Krieger algebra. Finally, we
apply these general results to study multifractal decompositions of limit sets
of essentially free Kleinian groups which may have parabolic elements. We
show that for the Cuntz--Krieger algebra arising from there exists an
analytic family of KMS states induced by the Lyapunov spectrum of the analogue
of the Bowen--Series map associated with . Furthermore, we obtain a formula
for the Hausdorff dimensions of the restrictions of these KMS states to the set
of continuous functions on the limit set of . If has no parabolic
elements, then this formula can be interpreted as the singularity spectrum of
the measure of maximal entropy associated with .Comment: 30 pages, minor changes in the proofs of Theorem 3.9 and Fact
Whole Earth Telescope observations of the hot helium atmosphere pulsating white dwarf EC 20058-5234
We present the analysis of a total of 177h of high-quality optical
time-series photometry of the helium atmosphere pulsating white dwarf (DBV) EC
20058-5234. The bulk of the observations (135h) were obtained during a WET
campaign (XCOV15) in July 1997 that featured coordinated observing from 4
southern observatory sites over an 8-day period. The remaining data (42h) were
obtained in June 2004 at Mt John Observatory in NZ over a one-week observing
period. This work significantly extends the discovery observations of this
low-amplitude (few percent) pulsator by increasing the number of detected
frequencies from 8 to 18, and employs a simulation procedure to confirm the
reality of these frequencies to a high level of significance (1 in 1000). The
nature of the observed pulsation spectrum precludes identification of unique
pulsation mode properties using any clearly discernable trends. However, we
have used a global modelling procedure employing genetic algorithm techniques
to identify the n, l values of 8 pulsation modes, and thereby obtain
asteroseismic measurements of several model parameters, including the stellar
mass (0.55 M_sun) and T_eff (~28200 K). These values are consistent with those
derived from published spectral fitting: T_eff ~ 28400 K and log g ~ 7.86. We
also present persuasive evidence from apparent rotational mode splitting for
two of the modes that indicates this compact object is a relatively rapid
rotator with a period of 2h. In direct analogy with the corresponding
properties of the hydrogen (DAV) atmosphere pulsators, the stable low-amplitude
pulsation behaviour of EC 20058 is entirely consistent with its inferred
effective temperature, which indicates it is close to the blue edge of the DBV
instability strip. (abridged)Comment: 19 pages, 8 figures, 5 tables, MNRAS accepte
Complex bounds for multimodal maps: bounded combinatorics
We proved the so called complex bounds for multimodal, infinitely
renormalizable analytic maps with bounded combinatorics: deep renormalizations
have polynomial-like extensions with definite modulus. The complex bounds is
the first step to extend the renormalization theory of unimodal maps to
multimodal maps.Comment: 20 pages, 3 figure
Virtual Meson Cloud of the Nucleon and Intrinsic Strangeness and Charm
We have applied the Meson Cloud Model (MCM) to calculate the charm and
strange antiquark distribution in the nucleon. The resulting distribution, in
the case of charm, is very similar to the intrinsic charm momentum distribution
in the nucleon. This seems to corroborate the hypothesis that the intrinsic
charm is in the cloud and, at the same time, explains why other calculations
with the MCM involving strange quark distributions fail in reproducing the low
x region data. From the intrinsic strange distribution in the nucleon we have
extracted the strangeness radius of the nucleon, which is in agreement with
other meson cloud calculations.Comment: 9 pages RevTex, 4 figure
Mode Identification from Combination Frequency Amplitudes in ZZ Ceti Stars
The lightcurves of variable DA stars are usually multi-periodic and
non-sinusoidal, so that their Fourier transforms show peaks at eigenfrequencies
of the pulsation modes and at sums and differences of these frequencies. These
combination frequencies provide extra information about the pulsations, both
physical and geometrical, that is lost unless they are analyzed. Several
theories provide a context for this analysis by predicting combination
frequency amplitudes. In these theories, the combination frequencies arise from
nonlinear mixing of oscillation modes in the outer layers of the white dwarf,
so their analysis cannot yield direct information on the global structure of
the star as eigenmodes provide. However, their sensitivity to mode geometry
does make them a useful tool for identifying the spherical degree of the modes
that mix to produce them. In this paper, we analyze data from eight hot,
low-amplitude DAV white dwarfs and measure the amplitudes of combination
frequencies present. By comparing these amplitudes to the predictions of the
theory of Goldreich & Wu, we have verified that the theory is crudely
consistent with the measurements. We have also investigated to what extent the
combination frequencies can be used to measure the spherical degree (ell) of
the modes that produce them. We find that modes with ell > 2 are easily
identifiable as high ell based on their combination frequencies alone.
Distinguishing between ell=1 and 2 is also possible using harmonics. These
results will be useful for conducting seismological analysis of large ensembles
of ZZ Ceti stars, such as those being discovered using the Sloan Digital Sky
Survey. Because this method relies only on photometry at optical wavelengths,
it can be applied to faint stars using 4 m class telescopes.Comment: 73 pages, 22 figures, accepted in the Ap
Interaction-powered supernovae: Rise-time vs. peak-luminosity correlation and the shock-breakout velocity
Interaction of supernova (SN) ejecta with the optically thick circumstellar
medium (CSM) of a progenitor star can result in a bright, long-lived shock
breakout event. Candidates for such SNe include Type IIn and superluminous SNe.
If some of these SNe are powered by interaction, then there should be a
relation between their peak luminosity, bolometric light-curve rise time, and
shock-breakout velocity. Given that the shock velocity during shock breakout is
not measured, we expect a correlation, with a significant spread, between the
rise time and the peak luminosity of these SNe. Here, we present a sample of 15
SNe IIn for which we have good constraints on their rise time and peak
luminosity from observations obtained using the Palomar Transient Factory. We
report on a possible correlation between the R-band rise time and peak
luminosity of these SNe, with a false-alarm probability of 3%. Assuming that
these SNe are powered by interaction, combining these observables and theory
allows us to deduce lower limits on the shock-breakout velocity. The lower
limits on the shock velocity we find are consistent with what is expected for
SNe (i.e., ~10^4 km/s). This supports the suggestion that the early-time light
curves of SNe IIn are caused by shock breakout in a dense CSM. We note that
such a correlation can arise from other physical mechanisms. Performing such a
test on other classes of SNe (e.g., superluminous SNe) can be used to rule out
the interaction model for a class of events.Comment: Accepted to ApJ, 6 page
An outburst from a massive star 40 days before a supernova explosion
Various lines of evidence suggest that very massive stars experience extreme
mass-loss episodes shortly before they explode as a supernova. Interestingly,
several models predict such pre-explosion outbursts. Establishing a causal
connection between these mass-loss episodes and the final supernova explosion
will provide a novel way to study pre-supernova massive-star evolution. Here we
report on observations of a remarkable mass-loss event detected 40 days prior
to the explosion of the Type IIn supernova SN 2010mc (PTF 10tel). Our
photometric and spectroscopic data suggest that this event is a result of an
energetic outburst, radiating at least 6x10^47 erg of energy, and releasing
about 0.01 Solar mass at typical velocities of 2000 km/s. We show that the
temporal proximity of the mass-loss outburst and the supernova explosion
implies a causal connection between them. Moreover, we find that the outburst
luminosity and velocity are consistent with the predictions of the wave-driven
pulsation model and disfavor alternative suggestions.Comment: Nature 494, 65, including supplementary informatio
A simple scheme for allocating capital in a foreign exchange proprietary trading firm
We present a model of capital allocation in a foreign exchange proprietary trading firm. The owner allocates capital to individual traders, who operate within strict risk limits. Traders specialize in individual currencies, but are given discretion over their choice of trading rule. The owner provides the simple formula that determines position sizes – a formula that does not require estimation of the firm-level covariance matrix. We provide supporting empirical evidence of excess risk-adjusted returns to the firm-level portfolio, and we discuss a modification of the model in which the owner dictates the choice of trading rule
Hanbury-Brown--Twiss Analysis in a Solvable Model
The analysis of meson correlations by Hanbury-Brown--Twiss interferometry is
tested with a simple model of meson production by resonance decay. We derive
conditions which should be satisfied in order to relate the measured momentum
correlation to the classical source size. The Bose correlation effects are
apparent in both the ratio of meson pairs to singles and in the ratio of like
to unlike pairs. With our parameter values, we find that the single particle
distribution is too distorted by the correlation to allow a straightforward
analysis using pair correlation normalized by the singles rates. An analysis
comparing symmetrized to unsymmetrized pairs is more robust, but nonclassical
off-shell effects are important at realistic temperatures.Comment: 21 pages + 9 figures (tarred etc. using uufiles, submitted
separately), REVTeX 3.0, preprint number: DOE/ER/40561-112/INT93-00-3
- …
