1,770 research outputs found
Spitzer 70 and 160-micron Observations of the COSMOS Field
We present Spitzer 70 and 160 micron observations of the COSMOS Spitzer
survey (S-COSMOS). The data processing techniques are discussed for the
publicly released products consisting of images and source catalogs. We present
accurate 70 and 160 micron source counts of the COSMOS field and find
reasonable agreement with measurements in other fields and with model
predictions. The previously reported counts for GOODS-North and the
extragalactic First Look Survey are updated with the latest calibration, and
counts are measured based on the large area SWIRE survey to constrain the
bright source counts. We measure an extragalactic confusion noise level of
sigma_c = 9.4+/-3.3 mJy (q=5) for the MIPS 160-micron band based on the deep
S-COSMOS data and report an updated confusion noise level of sigma_c =
0.35+/-0.15 mJy (q=5) for the MIPS 70-micron band.Comment: Accepted AJ, 15 Aug. 2009. Data available at
http://spider.ipac.caltech.edu/staff/frayer/mycosmos/ until released by IRS
Far Infrared Source Counts at 70 and 160 microns in Spitzer Deep Surveys
We derive galaxy source counts at 70 and 160 microns using the Multiband
Imaging Photometer for Spitzer (MIPS) to map the Chandra Deep Field South
(CDFS) and other fields. At 70 microns, our observations extend upwards about 2
orders of magnitude in flux density from a threshold of 15 mJy, and at 160
microns they extend about an order of magnitude upward from 50 mJy. The counts
are consistent with previous observations on the bright end. Significant
evolution is detected at the faint end of the counts in both bands, by factors
of 2-3 over no-evolution models. This evolution agrees well with models that
indicate most ofthe faint galaxies lie at redshifts between 0.7 and 0.9. The
new Spitzer data already resolve about 23% of the Cosmic Far Infrared
Background at 70 microns and about 7% at 160 microns.Comment: Small modifications to match printed version. Models in Differential
Counts plots were changed. MIPS Source Counts are available at:
http://lully.as.arizona.edu/GTODeep/Counts/ . Accepted for Publication in
ApJS Special Issue on Spitze
Mid- and Far-infrared Luminosity Functions and Galaxy Evolution from Multiwavelength Spitzer Observations up to z~2.5
[Abridged]We exploit a large homogeneous dataset to derive a self-consistent
picture of IR emission based on the time-dependent 24, 15, 12 and 8micron
monochromatic and bolometric IR luminosity functions (LF) over the 0<z<2.5
redshift range. Our analysis is based on the combination of data from deep
Spitzer surveys in the VVDS-SWIRE and GOODS areas. To our limiting flux of
S(24)=400microJy our derived sample in VVDS-SWIRE includes 1494 sources, and
666 and 904 sources brighter than S(24)=80microJy are catalogued in GOODS-S and
GOODS-N, respectively, for a total area of ~0.9 square degs. We obtain reliable
optical identifications and redshifts, providing us a rich and robust dataset
for our luminosity function determination. Based on the multi-wavelength
information available, we constrain the LFs at 8, 12, 15 and 24micron. We also
extrapolate total IR luminosities from our best-fit to the observed SEDs of
each source, and use this to derive the bolometric LF and comoving volume
emissivity up to z~2.5. In the 0<z<1 interval, the bolometric IR luminosity
density evolves as (1+z)^3.8+/-0.4. Although more uncertain at higher-z, our
results show a flattening of the IR luminosity density at z>1. The mean
redshift of the peak in the source number density shifts with luminosity: the
brighest IR galaxies appear to be forming stars earlier in cosmic time (z>1.5),
while the less luminous ones keep doing it at more recent epochs (z~1 for
L(IR)<10^11L_sun). Our results suggest a rapid increase of the galaxy IR
comoving volume emissivity back to z~1 and a constant average emissivity at
z>1. We also seem to find a difference in the evolution rate of the source
number densities as a function of luminosity, a downsizing evolutionary pattern
similar to that reported from other samples of cosmic sources.Comment: Accepted for pubblicantion in Astronomy and Astrophysic
Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations
We present all-sky modelling of the high resolution Planck, IRAS, and WISE
infrared (IR) observations using the physical dust model presented by Draine
and Li in 2007 (DL). We study the performance and results of this model, and
discuss implications for future dust modelling. The present work extends the DL
dust modelling carried out on nearby galaxies using Herschel and Spitzer data
to Galactic dust emission. We employ the DL dust model to generate maps of the
dust mass surface density, the optical extinction Av, and the starlight
intensity parametrized by Umin. The DL model reproduces the observed spectral
energy distribution (SED) satisfactorily over most of the sky, with small
deviations in the inner Galactic disk and in low ecliptic latitude areas. We
compare the DL optical extinction Av for the diffuse interstellar medium with
optical estimates for 2 10^5 quasi-stellar objects (QSOs) observed in the Sloan
digital sky survey. The DL Av estimates are larger than those determined
towards QSOs by a factor of about 2, which depends on Umin. The DL fitting
parameter Umin, effectively determined by the wavelength where the SED peaks,
appears to trace variations in the far-IR opacity of the dust grains per unit
Av, and not only in the starlight intensity. To circumvent the model
deficiency, we propose an empirical renormalization of the DL Av estimate,
dependent of Umin, which compensates for the systematic differences found with
QSO observations. This renormalization also brings into agreement the DL Av
estimates with those derived for molecular clouds from the near-IR colours of
stars in the 2 micron all sky survey. The DL model and the QSOs data are used
to compress the spectral information in the Planck and IRAS observations for
the diffuse ISM to a family of 20 SEDs normalized per Av, parameterized by
Umin, which may be used to test and empirically calibrate dust models.Comment: Final version that has appeared in A&
Planck Intermediate Results. IV. The XMM-Newton validation programme for new Planck galaxy clusters
We present the final results from the XMM-Newton validation follow-up of new
Planck galaxy cluster candidates. We observed 15 new candidates, detected with
signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck
survey. The candidates were selected using ancillary data flags derived from
the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the
aim of pushing into the low SZ flux, high-z regime and testing RASS flags as
indicators of candidate reliability. 14 new clusters were detected by XMM,
including 2 double systems. Redshifts lie in the range 0.2 to 0.9, with 6
clusters at z>0.5. Estimated M500 range from 2.5 10^14 to 8 10^14 Msun. We
discuss our results in the context of the full XMM validation programme, in
which 51 new clusters have been detected. This includes 4 double and 2 triple
systems, some of which are chance projections on the sky of clusters at
different z. We find that association with a RASS-BSC source is a robust
indicator of the reliability of a candidate, whereas association with a FSC
source does not guarantee that the SZ candidate is a bona fide cluster.
Nevertheless, most Planck clusters appear in RASS maps, with a significance
greater than 2 sigma being a good indication that the candidate is a real
cluster. The full sample gives a Planck sensitivity threshold of Y500 ~ 4 10^-4
arcmin^2, with indication for Malmquist bias in the YX-Y500 relation below this
level. The corresponding mass threshold depends on z. Systems with M500 > 5
10^14 Msun at z > 0.5 are easily detectable with Planck. The newly-detected
clusters follow the YX-Y500 relation derived from X-ray selected samples.
Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray
luminosity on average for their mass. There is no indication of departure from
standard self-similar evolution in the X-ray versus SZ scaling properties.
(abridged)Comment: accepted by A&
Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect--cosmic infrared background correlation
We use Planck data to detect the cross-correlation between the thermal
Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that
make up the the cosmic infrared background (CIB). We first perform a stacking
analysis towards Planck-confirmed galaxy clusters. We detect infrared emission
produced by dusty galaxies inside these clusters and demonstrate that the
infrared emission is about 50% more extended than the tSZ effect. Modelling the
emission with a Navarro--Frenk--White profile, we find that the radial profile
concentration parameter is . This indicates
that infrared galaxies in the outskirts of clusters have higher infrared flux
than cluster-core galaxies. We also study the cross-correlation between tSZ and
CIB anisotropies, following three alternative approaches based on power
spectrum analyses: (i) using a catalogue of confirmed clusters detected in
Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps;
and (iii) using cross-spectra between Planck frequency maps. With the three
different methods, we detect the tSZ-CIB cross-power spectrum at significance
levels of (i) 6 , (ii) 3 , and (iii) 4 . We model the
tSZ-CIB cross-correlation signature and compare predictions with the
measurements. The amplitude of the cross-correlation relative to the fiducial
model is . This result is consistent with
predictions for the tSZ-CIB cross-correlation assuming the best-fit
cosmological model from Planck 2015 results along with the tSZ and CIB scaling
relations.Comment: 18 pages, 16 figure
Planck intermediate results. VIII. Filaments between interacting clusters
About half of the baryons of the Universe are expected to be in the form of
filaments of hot and low density intergalactic medium. Most of these baryons
remain undetected even by the most advanced X-ray observatories which are
limited in sensitivity to the diffuse low density medium. The Planck satellite
has provided hundreds of detections of the hot gas in clusters of galaxies via
the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for
studying extended low density media through the tSZ effect. In this paper we
use the Planck data to search for signatures of a fraction of these missing
baryons between pairs of galaxy clusters. Cluster pairs are good candidates for
searching for the hotter and denser phase of the intergalactic medium (which is
more easily observed through the SZ effect). Using an X-ray catalogue of
clusters and the Planck data, we select physical pairs of clusters as
candidates. Using the Planck data we construct a local map of the tSZ effect
centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray
maps of these pairs. After having modelled and subtracted the tSZ effect and
X-ray emission for each cluster in the pair we study the residuals on both the
SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a
significant tSZ effect signal in the intercluster region beyond the virial
radii of the clusters. A joint X-ray SZ analysis allows us to constrain the
temperature and density of this intercluster medium. We obtain a temperature of
kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density
of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the
first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&
Planck Intermediate Results II: Comparison of Sunyaev-Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters
A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy
clusters as obtained by Planck and by the ground-based interferometer, the
Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric
Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure
profile, we jointly constrain the integrated Compton-Y parameter (Y_500) and
the scale radius (theta_500) of each cluster. Our resulting constraints in the
Y_500-theta_500 2D parameter space derived from the two instruments overlap
significantly for eight of the clusters, although, overall, there is a tendency
for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and
fainter than Planck. Significant discrepancies exist for the three remaining
clusters in the sample, namely A1413, A1914, and the newly-discovered Planck
cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the
Planck and AMI data is demonstrated through the use of detailed simulations,
which also discount confusion from residual point (radio) sources and from
diffuse astrophysical foregrounds as possible explanations for the
discrepancies found. For a subset of our cluster sample, we have investigated
the dependence of our results on the assumed pressure profile by repeating the
analysis adopting the best-fitting GNFW profile shape which best matches X-ray
observations. Adopting the best-fitting profile shape from the X-ray data does
not, in general, resolve the discrepancies found in this subset of five
clusters. Though based on a small sample, our results suggest that the adopted
GNFW model may not be sufficiently flexible to describe clusters universally.Comment: update to metadata author list onl
- …
