1,925 research outputs found
Incoherent dynamics in neutron-matter interaction
Coherent and incoherent neutron-matter interaction is studied inside a
recently introduced approach to subdynamics of a macrosystem. The equation
describing the interaction is of the Lindblad type and using the Fermi
pseudopotential we show that the commutator term is an optical potential
leading to well-known relations in neutron optics. The other terms, usually
ignored in optical descriptions and linked to the dynamic structure function of
the medium, give an incoherent contribution to the dynamics, which keeps
diffuse scattering and attenuation of the coherent beam into account, thus
warranting fulfilment of the optical theorem. The relevance of this analysis to
experiments in neutron interferometry is briefly discussed.Comment: 15 pages, revtex, no figures, to appear in Phys. Rev.
Overview of a New NASA Activity Focused on Planetary Defense
The National Aeronautics and Space Administration (NASA) has initiated a new Planetary Defense research activity, led by the NASA Ames Research Center. The objective of the effort is to provide tools for reliably assessing the impact damage that Potentially Hazardous Asteroids (PHAs) could inflict on the Earth. This research will support decisions regarding appropriate mitigation action in the event that an impact threat is discovered. The activity includes four interrelated tasks: PHA characterization, physics-based simulations of atmospheric entry breakup, simulations of surface damage due to airbursts, land impacts, or tsunamis, and an integrated assessment of the overall risks posed by potential PHA strikes. This paper outlines the objectives, research approaches, products, and interrelations of the activity's four tasks, and presents an overview of their current progress and preliminary results. Companion papers in this conference provide additional details of the work in the four task areas
Quasi Harmonic Lattice Dynamics and Molecular Dynamics calculations for the Lennard-Jones solids
We present Molecular Dynamics (MD), Quasi Harmonic Lattice Dynamics (QHLD)
and Energy Minimization (EM) calculations for the crystal structure of Ne, Ar,
Kr and Xe as a function of pressure and temperature. New Lennard-Jones (LJ)
parameters are obtained for Ne, Kr and Xe to reproduce the experimental
pressure dependence of the density. We employ a simple method which combines
results of QHLD and MD calculations to achieve densities in good agreement with
experiment from 0 K to melting. Melting is discussed in connection with
intrinsic instability of the solid as given by the QHLD approximation. (See
http://www.fci.unibo.it/~valle for related papers)Comment: 7 pages, 5 figures, REVte
Managing the Socially Marginalized: Attitudes Towards Welfare, Punishment and Race
Welfare and incarceration policies have converged to form a system of governance over socially marginalized groups, particularly racial minorities. In both of these policy areas, rehabilitative and social support objectives have been replaced with a more punitive and restrictive system. The authors examine the convergence in individual-level attitudes concerning welfare and criminal punishment, using national survey data. The authors\u27 analysis indicates a statistically significant relationship between punitive attitudes toward welfare and punishment. Furthermore, accounting for the respondents\u27 racial attitudes explains the bivariate relationship between welfare and punishment. Thus, racial attitudes seemingly link support for punitive approaches to opposition to welfare expenditures. The authors discuss the implications of this study for welfare and crime control policies by way of the conclusion
Configuration Complexities of Hydrogenic Atoms
The Fisher-Shannon and Cramer-Rao information measures, and the LMC-like or
shape complexity (i.e., the disequilibrium times the Shannon entropic power) of
hydrogenic stationary states are investigated in both position and momentum
spaces. First, it is shown that not only the Fisher information and the
variance (then, the Cramer-Rao measure) but also the disequilibrium associated
to the quantum-mechanical probability density can be explicitly expressed in
terms of the three quantum numbers (n, l, m) of the corresponding state.
Second, the three composite measures mentioned above are analytically,
numerically and physically discussed for both ground and excited states. It is
observed, in particular, that these configuration complexities do not depend on
the nuclear charge Z. Moreover, the Fisher-Shannon measure is shown to
quadratically depend on the principal quantum number n. Finally, sharp upper
bounds to the Fisher-Shannon measure and the shape complexity of a general
hydrogenic orbital are given in terms of the quantum numbers.Comment: 22 pages, 7 figures, accepted i
Coherent Coupled Qubits for Quantum Annealing
Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents I[subscript p]. Here, we examine an alternative approach using qubits with smaller I[subscript p] and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.United States. Office of the Director of National IntelligenceUnited States. Intelligence Advanced Research Projects ActivityUnited States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (FA8721-05-C-0002
Reaction rates for Neutron Capture Reactions to C-, N- and O-isotopes to the neutron rich side of stability
The reaction rates of neutron capture reactions on light nuclei are important
for reliably simulating nucleosynthesis in a variety of stellar scenarios.
Neutron capture reaction rates on neutron-rich C-, N-, and O-isotopes are
calculated in the framework of a hybrid compound and direct capture model. The
results are tabulated and compared with the results of previous calculations as
well as with experimental results.Comment: 33 pages (uses revtex) and 9 postscript figures, accepted for
publication in Phys. Rev.
Shaping the Development of Prejudice: Latent Growth Modeling of the Influence of Social Dominance Orientation on Outgroup Affect in Youth
Social dominance orientation (SDO) has been theorized as a stable, early-emerging trait influencing outgroup evaluations, a view supported by evidence from cross-sectional and two-wave longitudinal research. Yet, the limitations of identifying causal paths with cross-sectional and two-wave designs are increasingly being acknowledged. This article presents the first use of multi-wave data to test the over-time relationship between SDO and outgroup affect among young people. We use cross-lagged and latent growth modeling (LGM) of a three-wave data set employing Norwegian adolescents (over 2 years, N = 453) and a five-wave data set with American university students (over 4 years, N = 748). Overall, SDO exhibits high temporal rank-order stability and predicts changes in outgroup affect. This research represents the strongest test to date of SDO’s role as a stable trait that influences the development of prejudice, while highlighting LGM as a valuable tool for social and political psychology
Heroes and villains of world history across cultures
© 2015 Hanke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedEmergent properties of global political culture were examined using data from the World History Survey (WHS) involving 6,902 university students in 37 countries evaluating 40 figures from world history. Multidimensional scaling and factor analysis techniques found only limited forms of universality in evaluations across Western, Catholic/Orthodox, Muslim, and Asian country clusters. The highest consensus across cultures involved scientific innovators, with Einstein having the most positive evaluation overall. Peaceful humanitarians like Mother Theresa and Gandhi followed. There was much less cross-cultural consistency in the evaluation of negative figures, led by Hitler, Osama bin Laden, and Saddam Hussein. After more traditional empirical methods (e.g., factor analysis) failed to identify meaningful cross-cultural patterns, Latent Profile Analysis (LPA) was used to identify four global representational profiles: Secular and Religious Idealists were overwhelmingly prevalent in Christian countries, and Political Realists were common in Muslim and Asian countries. We discuss possible consequences and interpretations of these different representational profiles.This research was supported by grant RG016-P-10 from the Chiang Ching-Kuo Foundation for International Scholarly Exchange (http://www.cckf.org.tw/).
Religion
Culture
Entropy
China
Democracy
Economic histor
- …
