793 research outputs found
QT peak prolongation predicts cardiac death following stroke
Cardiac death has been linked in many populations to prolongation of the QT interval (QTe). However, basic science research suggested that the best estimate of the time point when repolarisation begins is near the T-wave peak. We found QT peak (QTp) was longer in hypertensive subjects with LVH. A prolonged “depolarisation” phase, rather than “repolarisation” (T peak to T end) might therefore account for the higher incidence of cardiac death linked to long QT. Hypothesis: We have tested the hypothesis that QT peak (QTp) prolongation predicts cardiac death in stroke survivors. Methods and Results: ECGs were recorded from 296 stroke survivors (152 male), mean age 67.2 (SD 11.6) approximately 1 year after the event. Their mean blood pressure was 152/88 mmHg (SD 29/15mmHg). These ECGs were digitised by one observer who was blinded to patient outcome. The patients were followed up for a median of 3.3 years. The primary endpoint was cardiac death. A prolonged heart rate corrected QT peak (QTpc) of lead I carried the highest relative risk of death from all cause as well as cardiac death, when compared with the other more conventional QT indices. In multivariate analyses, when adjusted for conventional risk factors of atherosclerosis, a prolonged QTpc of lead I was still associated with a 3-fold increased risk of cardiac death. (adjusted relative risk 3.0 [95% CI 1.1 - 8.5], p=0.037). Conclusion: QT peak prolongation in lead I predicts cardiac death after strok
Towards understanding the clinical significance of QT peak prolongation: a novel marker of myocardial ischemia independently demonstrated in two prospective studies
Background: QT peak prolongation identified patients at risk of death or non-fatal MI. We tested the hypothesis that QT peak prolongation might be associated with significant myocardial ischaemia in two separate cohorts to see how widely applicable the concept was. Methods and Results: In the first study, 134 stroke survivors were prospectively recruited and had 12-lead ECGs and Nuclear myocardial perfusion scanning. QT peak was measured in lead I of a 12-lead ECG and heart rate corrected by Bazett’s formula (QTpc). QTpc prolongation to 360ms or more was 92% specific at diagnosing severe myocardial ischaemia. This hypothesis-generating study led us to perform a second prospective study in a different cohort of patients who were referred for dobutamine stress echocardiography. 13 of 102 patients had significant myocardial ischaemia. Significant myocardial ischaemia was associated with QT peak prolongation at rest (mean 354ms, 95% CI 341-367ms, compared with mean 332ms, 95% CI 327-337ms in those without significant ischaemia; p=0.002). QT peak prolongation to 360ms or more was 88% specific at diagnosing significant myocardial ischaemia in the stress echocardiography study. QT peak prolongation to 360ms or more was associated with over 4-fold increase odds ratio of significant myocardial ischaemia. The Mantel- Haenszel Common Odds Ratio Estimate=4.4, 95% CI=1.2-16.0, p=0.023. Conclusion: QT peak (QTpc) prolongation to 360ms or more should make us suspect the presence of significant myocardial ischaemia. Such patients merit further investigations for potentially treatable ischaemic heart disease to reduce their risk of subsequent death or non-fatal MI
Changes in wave climate over the northwest European shelf seas during the last 12,000 years
Because of the depth attenuation of wave orbital velocity, wave-induced bed shear stress is much more sensitive to changes in total water depth than tidal-induced bed shear stress. The ratio between wave- and tidal-induced bed shear stress in many shelf sea regions has varied considerably over the recent geological past because of combined eustatic changes in sea level and isostatic adjustment. In order to capture the high-frequency nature of wind events, a two-dimensional spectral wave model is here applied at high temporal resolution to time slices from 12 ka BP to present using paleobathymetries of the NW European shelf seas. By contrasting paleowave climates and bed shear stress distributions with present-day conditions, the model results demonstrate that, in regions of the shelf seas that remained wet continuously over the last 12,000 years, annual root-mean-square (rms) and peak wave heights increased from 12 ka BP to present. This increase in wave height was accompanied by a large reduction in the annual rms wave- induced bed shear stress, primarily caused by a reduction in the magnitude of wave orbital velocity penetrating to the bed for increasing relative sea level. In regions of the shelf seas which remained wet over the last 12,000 years, the annual mean ratio of wave- to (M-2) tidal-induced bed shear stress decreased from 1 (at 12 ka BP) to its present-day value of 0.5. Therefore compared to present- day conditions, waves had a more important contribution to large-scale sediment transport processes in the Celtic Sea and the northwestern North Sea at 12 ka BP
Does oral sodium bicarbonate therapy improve function and quality of life in older patients with chronic kidney disease and low-grade acidosis (the BiCARB trial)? Study protocol for a randomized controlled trial
Date of acceptance: 01/07/2015 © 2015 Witham et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Acknowledgements UK NIHR HTA grant 10/71/01. We acknowledge the financial support of NHS Research Scotland in conducting this trial.Peer reviewedPublisher PD
Chemotherapy-Response Monitoring of Breast Cancer Patients Using Quantitative Ultrasound-Based Intra-Tumour Heterogeneities
© 2017 The Author(s). Anti-cancer therapies including chemotherapy aim to induce tumour cell death. Cell death introduces alterations in cell morphology and tissue micro-structures that cause measurable changes in tissue echogenicity. This study investigated the effectiveness of quantitative ultrasound (QUS) parametric imaging to characterize intra-tumour heterogeneity and monitor the pathological response of breast cancer to chemotherapy in a large cohort of patients (n = 100). Results demonstrated that QUS imaging can non-invasively monitor pathological response and outcome of breast cancer patients to chemotherapy early following treatment initiation. Specifically, QUS biomarkers quantifying spatial heterogeneities in size, concentration and spacing of acoustic scatterers could predict treatment responses of patients with cross-validated accuracies of 82 ± 0.7%, 86 ± 0.7% and 85 ± 0.9% and areas under the receiver operating characteristic (ROC) curve of 0.75 ± 0.1, 0.80 ± 0.1 and 0.89 ± 0.1 at 1, 4 and 8 weeks after the start of treatment, respectively. The patients classified as responders and non-responders using QUS biomarkers demonstrated significantly different survivals, in good agreement with clinical and pathological endpoints. The results form a basis for using early predictive information on survival-linked patient response to facilitate adapting standard anti-cancer treatments on an individual patient basis
Changes in protease inhibitors after acute myocardial infarction.
Plasma levels of fibrinogen, alpha1-antitrypsin, alpha2-macroglobulin, antithrombin III, and C1 inactivator were measured serially for 10 days in 11 patients after acute myocardial infarction. Both fibrinogen and alpha1-antitrypsin rose markedly to reach peak levels 5-7 days after infarction while C1 inactivator levels rose slowly with the highest observed mean level on the 10th postinfarction day. Neither antithrombin III nor alpha2-macroglobulin changed significantly after myocardial infarction. No relationship between C1 inactivator levels and either fibrinogen or alpha1-antitrypsin was found in a study of 30 patients with a variety of disorders while fibrinogen and alpha1-antitrypsin levels were significantly correlated
Determining the neurotransmitter concentration profile at active synapses
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
Assessing sedimentation equilibrium profiles in analytical ultracentrifugation experiments on macromolecules: from simple average molecular weight analysis to molecular weight distribution and interaction analysis
Molecular weights (molar masses), molecular weight distributions, dissociation constants and other interaction parameters are fundamental characteristics of proteins, nucleic acids, polysaccharides and glycoconjugates in solution. Sedimentation equilibrium in the analytical ultracentrifugation provides a powerful method with no supplementary immobilization, columns or membranes required. It is particularly powerful when used in conjunction with its sister technique, namely sedimentation velocity analysis. We describe key approaches now available and their application to the characterisation of antibodies polysaccharides and glycoconjugates. We indicate how major complications such as thermodynamic non-ideality can now be routinely dealt with, thanks to a great extent to the extensive contribution of Professor DonWinzor over several decades of research
- …
