628 research outputs found
Energy resolution of terahertz single-photon-sensitive bolometric detectors
We report measurements of the energy resolution of ultra-sensitive
superconducting bolometric detectors. The device is a superconducting titanium
nanobridge with niobium contacts. A fast microwave pulse is used to simulate a
single higher-frequency photon, where the absorbed energy of the pulse is equal
to the photon energy. This technique allows precise calibration of the input
coupling and avoids problems with unwanted background photons. Present devices
have an intrinsic full-width at half-maximum energy resolution of approximately
23 terahertz, near the predicted value due to intrinsic thermal fluctuation
noise.Comment: 11 pages (double-spaced), 5 figures; minor revision
The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae
The influence of fast vibrations on energy transfer and conversion in natural
molecular aggregates is an issue of central interest. This article shows the
important role of high-energy quantized vibrations and their non-equilibrium
dynamics for energy transfer in photosynthetic systems with highly localized
excitonic states. We consider the cryptophyte antennae protein phycoerythrin
545 and show that coupling to quantized vibrations which are quasi-resonant
with excitonic transitions is fundamental for biological function as it
generates non-cascaded transport with rapid and wider spatial distribution of
excitation energy. Our work also indicates that the non-equilibrium dynamics of
such vibrations can manifest itself in ultrafast beating of both excitonic
populations and coherences at room temperature, with time scales in agreement
with those reported in experiments. Moreover, we show that mechanisms
supporting coherent excitonic dynamics assist coupling to selected modes that
channel energy to preferential sites in the complex. We therefore argue that,
in the presence of strong coupling between electronic excitations and quantized
vibrations, a concrete and important advantage of quantum coherent dynamics is
precisely to tune resonances that promote fast and effective energy
distribution.Comment: 16 Pages, 10 figures. Version to appear in The Journal of Chemical
Physic
Ensemble averaged entanglement of two-particle states in Fock space
Recent results, extending the Schmidt decomposition theorem to wavefunctions
of identical particles, are reviewed. They are used to give a definition of
reduced density operators in the case of two identical particles. Next, a
method is discussed to calculate time averaged entanglement. It is applied to a
pair of identical electrons in an otherwise empty band of the Hubbard model,
and to a pair of bosons in the the Bose-Hubbard model with infinite range
hopping. The effect of degeneracy of the spectrum of the Hamiltonian on the
average entanglement is emphasised.Comment: 19 pages Latex, changed title, references added in the conclusion
Optical signatures of quantum phase transitions in a light-matter system
Information about quantum phase transitions in conventional condensed matter
systems, must be sought by probing the matter system itself. By contrast, we
show that mixed matter-light systems offer a distinct advantage in that the
photon field carries clear signatures of the associated quantum critical
phenomena. Having derived an accurate, size-consistent Hamiltonian for the
photonic field in the well-known Dicke model, we predict striking behavior of
the optical squeezing and photon statistics near the phase transition. The
corresponding dynamics resemble those of a degenerate parametric amplifier. Our
findings boost the motivation for exploring exotic quantum phase transition
phenomena in atom-cavity, nanostructure-cavity, and
nanostructure-photonic-band-gap systems.Comment: 4 pages, 4 figure
Distribution of entanglement in light-harvesting complexes and their quantum efficiency
Recent evidence of electronic coherence during energy transfer in
photosynthetic antenna complexes has reinvigorated the discussion of whether
coherence and/or entanglement has any practical functionality for these
molecular systems. Here we investigate quantitative relationships between the
quantum yield of a light-harvesting complex and the distribution of
entanglement among its components. Our study focusses on the entanglement yield
or average entanglement surviving a time scale comparable to the average
excitation trapping time. As a prototype system we consider the
Fenna-Matthews-Olson (FMO) protein of green sulphur bacteria and show that
there is an inverse relationship between the quantum efficiency and the average
entanglement between distant donor sites. Our results suggest that longlasting
electronic coherence among distant donors might help modulation of the
lightharvesting function.Comment: Version accepted for publication in NJ
Quantum transport in quantum networks and photosynthetic complexes at the steady state
Recently, several works have analysed the efficiency of photosynthetic
complexes in a transient scenario and how that efficiency is affected by
environmental noise. Here, following a quantum master equation approach, we
study the energy and excitation transport in fully connected networks both in
general and in the particular case of the Fenna-Matthew-Olson complex. The
analysis is carried out for the steady state of the system where the excitation
energy is constantly "flowing" through the system. Steady state transport
scenarios are particularly relevant if the evolution of the quantum system is
not conditioned on the arrival of individual excitations. By adding dephasing
to the system, we analyse the possibility of noise-enhancement of the quantum
transport.Comment: 10 pages, single column, 6 figures. Accepted for publication in Plos
On
Non-Markovian stochastic description of quantum transport in photosynthetic systems
We analyze several aspects of the transport dynamics in the LH1-RC core of
purple bacteria, which consists basically in a ring of antenna molecules that
transport the energy into a target molecule, the reaction center, placed in the
center of the ring. We show that the periodicity of the system plays an
important role to explain the relevance of the initial state in the transport
efficiency. This picture is modified, and the transport enhanced for any
initial state, when considering that molecules have different energies, and
when including their interaction with the environment. We study this last
situation by using stochastic Schr{\"o}dinger equations, both for Markovian and
non-Markovian type of interactions.Comment: 21 pages, 5 figure
Role of quantum coherence in chromophoric energy transport
The role of quantum coherence and the environment in the dynamics of
excitation energy transfer is not fully understood. In this work, we introduce
the concept of dynamical contributions of various physical processes to the
energy transfer efficiency. We develop two complementary approaches, based on a
Green's function method and energy transfer susceptibilities, and quantify the
importance of the Hamiltonian evolution, phonon-induced decoherence, and
spatial relaxation pathways. We investigate the Fenna-Matthews-Olson protein
complex, where we find a contribution of coherent dynamics of about 10% and of
relaxation of 80%.Comment: 5 pages, 3 figures, included static disorder, correlated environmen
Search for CP violation in D0 and D+ decays
A high statistics sample of photoproduced charm particles from the FOCUS
(E831) experiment at Fermilab has been used to search for CP violation in the
Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We
have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/-
0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) =
+0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second
error is systematic. These asymmetries are consistent with zero with smaller
errors than previous measurements.Comment: 12 pages, 4 figure
- …
