582 research outputs found

    Detectability of dissipative motion in quantum vacuum via superradiance

    Get PDF
    We propose an experiment for generating and detecting vacuum-induced dissipative motion. A high frequency mechanical resonator driven in resonance is expected to dissipate energy in quantum vacuum via photon emission. The photons are stored in a high quality electromagnetic cavity and detected through their interaction with ultracold alkali-metal atoms prepared in an inverted population of hyperfine states. Superradiant amplification of the generated photons results in a detectable radio-frequency signal temporally distinguishable from the expected background.Comment: 4 pages, 2 figure

    Photon creation in a spherical oscillating cavity

    Get PDF
    We study the photon creation inside a perfectly conducting, spherical oscillating cavity. The electromagnetic field inside the cavity is described by means of two scalar fields which satisfy Dirichlet and (generalized) Neumann boundary conditions. As a preliminary step, we analyze the dynamical Casimir effect for both scalar fields. We then consider the full electromagnetic case. The conservation of angular momentum of the electromagnetic field is also discussed, showing that photons inside the cavity are created in singlet states.Comment: 14 pages, no figure

    Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry

    Get PDF
    We have performed precision electrostatic calibrations in the sphere-plane geometry and observed anomalous behavior. Namely, the scaling exponent of the electrostatic signal with distance was found to be smaller than expected on the basis of the pure Coulombian contribution and the residual potential found to be distance dependent. We argue that these findings affect the accuracy of the electrostatic calibrations and invite reanalysis of previous determinations of the Casimir force.Comment: 4 pages, 4 figure

    Thermal and dissipative effects in Casimir physics

    Get PDF
    We report on current efforts to detect the thermal and dissipative contributions to the Casimir force. For the thermal component, two experiments are in progress at Dartmouth and at the Institute Laue Langevin in Grenoble. The first experiment will seek to detect the Casimir force at the largest explorable distance using a cylinder-plane geometry which offers various advantages with respect to both sphere-plane and parallel-plane geometries. In the second experiment, the Casimir force in the parallel-plane configuration is measured with a dedicated torsional balance, up to 10 micrometers. Parallelism of large surfaces, critical in this configuration, is maintained through the use of inclinometer technology already implemented at Grenoble for the study of gravitationally bound states of ultracold neutrons, For the dissipative component of the Casimir force, we discuss detection techniques based upon the use of hyperfine spectroscopy of ultracold atoms and Rydberg atoms. Although quite challenging, this triad of experimental efforts, if successful, will give us a better knowledge of the interplay between quantum and thermal fluctuations of the electromagnetic field and of the nature of dissipation induced by the motion of objects in a quantum vacuum.Comment: Contribution to QFEXT'06, appeared in special issue of Journal of Physics

    Black hole mass estimates in quasars - A comparative analysis of high- and low-ionization lines

    Get PDF
    The inter-line comparison between high- and low-ionization emission lines has yielded a wealth of information on the quasar broad line region (BLR) structure and dynamics, including perhaps the earliest unambiguous evidence in favor of a disk + wind structure in radio-quiet quasars. We carried out an analysis of the CIV 1549 and Hbeta line profiles of 28 Hamburg-ESO high luminosity quasars and of 48 low-z, low luminosity sources in order to test whether the high-ionization line CIV 1549 width could be correlated with Hbeta and be used as a virial broadening estimator. We analyze intermediate- to high-S/N, moderate resolution optical and NIR spectra covering the redshifted CIV and Hβ\beta over a broad range of luminosity log L ~ 44 - 48.5 [erg/s] and redshift (0 - 3), following an approach based on the quasar main sequence. The present analysis indicates that the line width of CIV 1549 is not immediately offering a virial broadening estimator equivalent to Hβ\beta. At the same time a virialized part of the BLR appears to be preserved even at the highest luminosities. We suggest a correction to FWHM(CIV) for Eddington ratio (using the CIV blueshift as a proxy) and luminosity effects that can be applied over more than four dex in luminosity. Great care should be used in estimating high-L black hole masses from CIV 1549 line width. However, once corrected FWHM(CIV) values are used, a CIV-based scaling law can yield unbiased MBH values with respect to the ones based on Hβ\beta with sample standard deviation ~ 0.3 dex.Comment: 43 pages, 15 Figures, submitted to A&

    Are violations to temporal Bell inequalities there when somebody looks?

    Get PDF
    The possibility of observing violations of temporal Bell inequalities, originally proposed by Leggett as a mean of testing the quantum mechanical delocalization of suitably chosen macroscopic bodies, is discussed by taking into account the effect of the measurement process. A general criterion quantifying this possibility is defined and shown not to be fulfilled by the various experimental configurations proposed so far to test inequalities of different forms.Comment: 7 pages, 1 eps figure, needs europhys.sty and euromacr.tex, enclosed in the .tar.gz file; accepted for publication in Europhysics Letter

    Vortex Nucleation in a Stirred Bose-Einstein Condensate

    Full text link
    We studied the nucleation of vortices in a Bose-Einstein condensate stirred by a laser beam. We observed the vortex cores using time-of-flight absorption imaging. By varying the size of the stirrer, we observed either discrete resonances or a broad response as a function of the frequency of the stirrer's motion. Stirring beams small compared to the condensate size generated vortices below the critical rotation frequency for the nucleation of surface modes, suggesting a local mechanism of generation. In addition, we observed the centrifugal distortion of the condensate due to the rotating vortex lattice and found evidence for bent vortices

    Quantum field effects in coupled atomic and molecular Bose-Einstein condensates

    Full text link
    This paper examines the parameter regimes in which coupled atomic and molecular Bose-Einstein condensates do not obey the Gross-Pitaevskii equation. Stochastic field equations for coupled atomic and molecular condensates are derived using the functional positive-P representation. These equations describe the full quantum state of the coupled condensates and include the commonly used Gross-Pitaevskii equation as the noiseless limit. The model includes all interactions between the particles, background gas losses, two-body losses and the numerical simulations are performed in three dimensions. It is found that it is possible to differentiate the quantum and semiclassical behaviour when the particle density is sufficiently low and the coupling is sufficiently strong.Comment: 4 postscript figure

    Experimental observation of the Bogoliubov transformation for a Bose-Einstein condensed gas

    Full text link
    Phonons with wavevector q/q/\hbar were optically imprinted into a Bose-Einstein condensate. Their momentum distribution was analyzed using Bragg spectroscopy with a high momentum transfer. The wavefunction of the phonons was shown to be a superposition of +q and -q free particle momentum states, in agreement with the Bogoliubov quasiparticle picture.Comment: 4 pages, 3 figures, please take postscript version for the best version of Fig
    corecore