623 research outputs found

    Epitaxial growth and transport properties of Sr2_2CrWO6_6 thin films

    Full text link
    We report on the preparation and characterization of epitaxial thin films of the double-perovskite Sr2_2CrWO6_6 by Pulsed Laser Deposition (PLD). On substrates with low lattice mismatch like SrTiO3_3, epitaxial Sr2_2CrWO6_6 films with high crystalline quality can be grown in a molecular layer-by-layer growth mode. Due to the similar ionic radii of Cr and W, these elements show no sublattice order. Nevertheless, the measured Curie temperature is well above 400 K. Due to the reducing growth atmosphere required for double perovskites, the SrTiO3_3 substrate surface undergoes an insulator-metal transition impeding the separation of thin film and substrate electric transport properties.Comment: 3 pages, 5 figure

    Epitaxy of Fe3O4 on Si(001) by pulsed laser deposition using a TiN/MgO buffer layer

    Full text link
    Epitaxy of oxide materials on silicon (Si) substrates is of great interest for future functional devices using the large variety of physical properties of the oxides as ferroelectricity, ferromagnetism, or superconductivity. Recently, materials with high spin polarization of the charge carriers have become interesting for semiconductor-oxide hybrid devices in spin electronics. Here, we report on pulsed laser deposition of magnetite (Fe3O4) on Si(001) substrates cleaned by an in situ laser beam high temperature treatment. After depositing a double buffer layer of titanium nitride (TiN) and magnesium oxide (MgO), a high quality epitaxial magnetite layer can be grown as verified by RHEED intensity oscillations and high resolution x-ray diffraction.Comment: submitte

    Magnetic interference patterns in 0-Pi SIFS Josephson junctions: effects of asymmetry between 0 and Pi regions

    Get PDF
    We present a detailed analysis of the dependence of the critical current I_c on the magnetic field B of 0, Pi, and 0-Pi superconductor-insulator-ferromagnet-superconductor Josephson junctions. I_c(B) of the 0 and Pi junction closely follows a Fraunhofer pattern, indicating a homogeneous critical current density j_c(x). The maximum of I_c(B) is slightly shifted along the field axis, pointing to a small remanent in-plane magnetization of the F-layer along the field axis. I_c(B) of the 0-Pi junction exhibits the characteristic central minimum. I_c however has a finite value here, due to an asymmetry of j_c in the 0 and Pi part. In addition, this I_c(B) exhibits asymmetric maxima and bumped minima. To explain these features in detail, flux penetration being different in the 0 part and the Pi part needs to be taken into account. We discuss this asymmetry in relation to the magnetic properties of the F-layer and the fabrication technique used to produce the 0-Pi junctions

    Magnetic and structural properties of GeMn films: precipitation of intermetallic nanomagnets

    Get PDF
    We present a comprehensive study relating the nanostructure of Ge_0.95Mn_0.05 films to their magnetic properties. The formation of ferromagnetic nanometer sized inclusions in a defect free Ge matrix fabricated by low temperature molecular beam epitaxy is observed down to substrate temperatures T_S as low as 70 deg. Celsius. A combined transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS) analysis of the films identifies the inclusions as precipitates of the ferromagnetic compound Mn_5Ge_3. The volume and amount of these precipitates decreases with decreasing T_S. Magnetometry of the films containing precipitates reveals distinct temperature ranges: Between the characteristic ferromagnetic transition temperature of Mn_5Ge_3 at approximately room temperature and a lower, T_S dependent blocking temperature T_B the magnetic properties are dominated by superparamagnetism of the Mn_5Ge_3 precipitates. Below T_B, the magnetic signature of ferromagnetic precipitates with blocked magnetic moments is observed. At the lowest temperatures, the films show features characteristic for a metastable state.Comment: accepted for publication in Phys. Rev. B 74 (01.12.2006). High resolution images ibide

    Permafrost hydrology in changing climatic conditions: seasonal variability of stable isotope composition in rivers in discontinuous permafrost

    Get PDF
    Role of changing climatic conditions on permafrost degradation and hydrology was investigated in the transition zone between the tundra and forest ecotones at the boundary of continuous and discontinuous permafrost of the lower Yenisei River. Three watersheds of various sizes were chosen to represent the characteristics of the regional landscape conditions. Samples of river flow, precipitation, snow cover, and permafrost ground ice were collected over the watersheds to determine isotopic composition of potential sources of water in a river flow over a two year period. Increases in air temperature over the last forty years have resulted in permafrost degradation and a decrease in the seasonal frost which is evident from soil temperature measurements, permafrost and active-layer monitoring, and analysis of satellite imagery. The lowering of the permafrost table has led to an increased storage capacity of permafrost affected soils and a higher contribution of ground water to river discharge during winter months. A progressive decrease in the thickness of the layer of seasonal freezing allows more water storage and pathways for water during the winter low period making winter discharge dependent on the timing and amount of late summer precipitation. There is a substantial seasonal variability of stable isotopic composition of river flow. Spring flooding corresponds to the isotopic composition of snow cover prior to the snowmelt. Isotopic composition of river flow during the summer period follows the variability of precipitation in smaller creeks, while the water flow of larger watersheds is influenced by the secondary evaporation of water temporarily stored in thermokarst lakes and bogs. Late summer precipitation determines the isotopic composition of texture ice within the active layer in tundra landscapes and the seasonal freezing layer in forested landscapes as well as the composition of the water flow during winter months

    Local charge and spin currents in magnetothermal landscapes

    Full text link
    A scannable laser beam is used to generate local thermal gradients in metallic (Co2FeAl) or insulating (Y3Fe5O12) ferromagnetic thin films. We study the resulting local charge and spin currents that arise due to the anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE), respectively. In the local ANE experiments, we detect the voltage in the Co2FeAl thin film plane as a function of the laser spot position and external magnetic field magnitude and orientation. The local SSE effect is detected in a similar fashion by exploiting the inverse spin Hall effect in a Pt layer deposited on top of the Y3Fe5O12. Our findings establish local thermal spin and charge current generation as well as spin caloritronic domain imaging
    corecore