1,361 research outputs found
EFFECT OF GENERIC ADVERTISING ON THE DEMAND FOR FLUID MILK: THE CASE OF THE TEXAS MARKET ORDER
This analysis indicates that generic advertising expenditures, ceteris paribus, generated rightward shifts in demand for fluid milk in the Texas Market Order over the period January 1980 to September 1988. Generally, the results from this study are in agreement with previous research efforts which suggest that generic advertising can increase the demand for fluid milk. Importantly, in this analysis, the impacts of television and radio advertising have been effectively disentangled. Television advertising generates a response that wears off more quickly than radio advertising. Also, the long-run effect of radio advertising is bout 1.75 times greater than the long-run effect of television advertising.Demand and Price Analysis, Marketing,
Effect of varying magnetic fields on targeted gene delivery of nucleic acid-based molecules
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.The importance of high transfection efficiency has been emphasized in many studies investigating
methods to improve gene delivery. Accordingly, non-viral transfection agents are widely used as transfection
vectors to condense oligonucleotides, DNA, RNA, siRNA, deliver into the cell, and release the cargo.
Polyethyleneimine (PEI) is one of the most popular non-viral transfection agents. However, the challenge
between high transfection efficiency and toxicity of the polymers is not totally resolved. The delivery of
necessary drugs and genes for patients and their transport under safe conditions require carefully designed
and controlled delivery systems and constitute a critical stage of patients’ treatment. Compact systems are
considered as the strongest candidate for the preparation and delivery of drugs and genes under leak free and
safe conditions because of their low energy consumption, low waste disposal, parallel and fast processing
capabilities, removal of human factor, high mixing capabilities, enhanced safety, and low amount of
reagents. Motivated by this need in the literature, a platform for gene delivery via magnetic actuation of
nanoparticles was developed in this study. The use of PEI-SPION (Super paramagnetic ironoxide
nanoparticles) as transfection agents in in vitro studies was investigated with the effect of varying magnetic
fields provided by a special magnetic system design, which was used as magnetic actuator offering different
magnet's turn speeds and directions in the system. Results obtained from magnetic actuator systems were
compared to the experiments without actuation and significant enhancement was observed in the transfection
efficacies
Bubbly cavitating flow generation and investigation of its erosional nature for biomedical applications
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.The paper presents a study of the generation of hydrodynamic bubbly cavitation in microchannels to investigate the destructive energy output resulting from this phenomenon and its potential use in biomedical applications. The research performed in this study includes the experimental results from bubbly cavitation experiments and the findings showing the destructive effects of bubbly cavitating flow on selected specimens and cells. The bubbles caused by hydrodynamic cavitation are highly destructive at the surfaces of the target medium on which they are carefully focused. The resulting destructive energy output could be effectively used for good means such as destroying kidney stones or killing infected cancer cells. Motivated by this potential, the cavitation damage (material removal) to cancerous cells and chalk pieces having similar material properties as calcium phosphate in human bones was investigated. Also the potential of hydrodynamic bubbly cavitation generated at the microscale for biomedical treatments was revealed using the microchannel configuration of a microorifice (with an inner diameter of 0.147 mm and a length of 1.52cm).This work was supported by Sabancı University Internal Grant for Research Program under Grant FRG-C47004
DETERMINANTS OF WHOLESALE BEEF-CUT PRICES
Key determinants of monthly wholesale prices for 12 beef cuts include the quantity of the specific cut, stickiness in prices, marketing costs, quantities of pork and chicken, and seasonality. Seasonal patterns across the respective cuts are very different. Relative to the price in December, prices at the wholesale level in other months can be as much as 6 percent lower to as much as 21 percent higher.Wholesale prices, Beef cuts, Seasonality, Demand and Price Analysis, Livestock Production/Industries,
Is there evidence for accelerated polyethylene wear in uncemented compared to cemented acetabular components? A systematic review of the literature
Joint arthroplasty registries show an increased rate of aseptic loosening in uncemented acetabular components as compared to cemented acetabular components. Since loosening is associated with particulate wear debris, we postulated that uncemented acetabular components demonstrate a higher polyethylene wear rate than cemented acetabular components in total hip arthroplasty. We performed a systematic review of the peer-reviewed literature, comparing the wear rate in uncemented and cemented acetabular components in total hip arthroplasty. Studies were identified using MEDLINE (PubMed), EMBASE and the Cochrane Central Register of Controlled Trials. Study quality was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. The search resulted in 425 papers. After excluding duplicates and selection based on title and abstracts, nine studies were found eligible for further analysis: two randomised controlled trials, and seven observational studies. One randomised controlled trial found a higher polyethylene wear rate in uncemented acetabular components, while the other found no differences. Three out of seven observational studies showed a higher polyethylene wear in uncemented acetabular component fixation; the other four studies did not show any differences in wear rates. The available evidence suggests that a higher annual wear rate may be encountered in uncemented acetabular components as compared to cemented components
Survival of dental implants in patients with oral cancer treated by surgery and radiotherapy: a retrospective study
BACKGROUND:
The aim of this retrospective study was to evaluate the survival of dental implants placed after ablative surgery, in patients affected by oral cancer treated with or without radiotherapy.
METHODS:
We collected data for 34 subjects (22 females, 12 males; mean age: 51 ± 19) with malignant oral tumors who had been treated with ablative surgery and received dental implant rehabilitation between 2007 and 2012. Postoperative radiation therapy (less than 50 Gy) was delivered before implant placement in 12 patients. A total of 144 titanium implants were placed, at a minimum interval of 12 months, in irradiated and non-irradiated residual bone.
RESULTS:
Implant loss was dependent on the position and location of the implants (P = 0.05-0.1). Moreover, implant survival was dependent on whether the patient had received radiotherapy. This result was highly statistically significant (P < 0.01). Whether the implant was loaded is another highly significant (P < 0.01) factor determinin
Soft systems methodology: a context within a 50-year retrospective of OR/MS
Soft systems methodology (SSM) has been used in the practice of operations research and management science OR/MS) since the early 1970s. In the 1990s, it emerged as a viable academic discipline. Unfortunately, its proponents consider SSM and traditional systems thinking to be mutually exclusive. Despite the differences claimed by SSM proponents between the two, they have been complementary. An extensive sampling of the OR/MS literature over its entire lifetime demonstrates the richness with which the non-SSM literature has been addressing the very same issues as does SSM
Anticoagulant Therapy and Risk of Cerebrovascular Events After Catheter Ablation of Atrial Fibrillation in the Elderly
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90264/1/j.1540-8167.2011.02141.x.pd
Experiments in vortex avalanches
Avalanche dynamics is found in many phenomena spanning from earthquakes to
the evolution of species. It can be also found in vortex matter when a type II
superconductor is externally driven, for example, by increasing the magnetic
field. Vortex avalanches associated with thermal instabilities can be an
undesirable effect for applications, but "dynamically driven" avalanches
emerging from the competition between intervortex interactions and quenched
disorder constitute an interesting scenario to test theoretical ideas related
with non-equilibrium dynamics. However, differently from the equilibrium phases
of vortex matter in type II superconductors, the study of the corresponding
dynamical phases - in which avalanches can play a role - is still in its
infancy. In this paper we critically review relevant experiments performed in
the last decade or so, emphasizing the ability of different experimental
techniques to establish the nature and statistical properties of the observed
avalanche behavior.Comment: To be published in Reviews of Modern Physics April 2004. 17 page
MIR376A is a regulator of starvation-induced autophagy
Background: Autophagy is a vesicular trafficking process responsible for the degradation of long-lived, misfolded or abnormal proteins, as well as damaged or surplus organelles. Abnormalities of the autophagic activity may result in the accumulation of protein aggregates, organelle dysfunction, and autophagy disorders were associated with various diseases. Hence, mechanisms of autophagy regulation are under exploration.
Methods: Over-expression of hsa-miR-376a1 (shortly MIR376A) was performed to evaluate its effects on autophagy. Autophagy-related targets of the miRNA were predicted using Microcosm Targets and MIRanda bioinformatics tools and experimentally validated. Endogenous miRNA was blocked using antagomirs and the effects on target expression and autophagy were analyzed. Luciferase tests were performed to confirm that 3’ UTR sequences in target genes were functional. Differential expression of MIR376A and the related MIR376B was compared using TaqMan quantitative PCR.
Results: Here, we demonstrated that, a microRNA (miRNA) from the DlkI/Gtl2 gene cluster, MIR376A, played an important role in autophagy regulation. We showed that, amino acid and serum starvation-induced autophagy was blocked by MIR376A overexpression in MCF-7 and Huh-7 cells. MIR376A shared the same seed sequence and had overlapping targets with MIR376B, and similarly blocked the expression of key autophagy proteins ATG4C and BECN1 (Beclin 1). Indeed, 3’ UTR sequences in the mRNA of these autophagy proteins were responsive to MIR376A in luciferase assays. Antagomir tests showed that, endogenous MIR376A was participating to the control of ATG4C and BECN1 transcript and protein levels. Moreover, blockage of endogenous MIR376A accelerated starvation-induced autophagic activity. Interestingly, MIR376A and MIR376B levels were increased with different kinetics in response to starvation stress and tissue-specific level differences were also observed, pointing out to an overlapping but miRNA-specific biological role.
Conclusions: Our findings underline the importance of miRNAs encoded by the DlkI/Gtl2 gene cluster in stress-response control mechanisms, and introduce MIR376A as a new regulator of autophagy
- …
