1,342 research outputs found

    The Semi Implicit Gradient Augmented Level Set Method

    Full text link
    Here a semi-implicit formulation of the gradient augmented level set method is presented. By tracking both the level set and it's gradient accurate subgrid information is provided,leading to highly accurate descriptions of a moving interface. The result is a hybrid Lagrangian-Eulerian method that may be easily applied in two or three dimensions. The new approach allows for the investigation of interfaces evolving by mean curvature and by the intrinsic Laplacian of the curvature. In this work the algorithm, convergence and accuracy results are presented. Several numerical experiments in both two and three dimensions demonstrate the stability of the scheme.Comment: 19 Pages, 14 Figure

    Dewetting-controlled binding of ligands to hydrophobic pockets

    Full text link
    We report on a combined atomistic molecular dynamics simulation and implicit solvent analysis of a generic hydrophobic pocket-ligand (host-guest) system. The approaching ligand induces complex wetting/dewetting transitions in the weakly solvated pocket. The transitions lead to bimodal solvent fluctuations which govern magnitude and range of the pocket-ligand attraction. A recently developed implicit water model, based on the minimization of a geometric functional, captures the sensitive aqueous interface response to the concave-convex pocket-ligand configuration semi-quantitatively

    Linear stability analysis of capillary instabilities for concentric cylindrical shells

    Full text link
    Motivated by complex multi-fluid geometries currently being explored in fibre-device manufacturing, we study capillary instabilities in concentric cylindrical flows of NN fluids with arbitrary viscosities, thicknesses, densities, and surface tensions in both the Stokes regime and for the full Navier--Stokes problem. Generalizing previous work by Tomotika (N=2), Stone & Brenner (N=3, equal viscosities) and others, we present a full linear stability analysis of the growth modes and rates, reducing the system to a linear generalized eigenproblem in the Stokes case. Furthermore, we demonstrate by Plateau-style geometrical arguments that only axisymmetric instabilities need be considered. We show that the N=3 case is already sufficient to obtain several interesting phenomena: limiting cases of thin shells or low shell viscosity that reduce to N=2 problems, and a system with competing breakup processes at very different length scales. The latter is demonstrated with full 3-dimensional Stokes-flow simulations. Many N>3N > 3 cases remain to be explored, and as a first step we discuss two illustrative NN \to \infty cases, an alternating-layer structure and a geometry with a continuously varying viscosity

    Some flows in shape optimization

    Get PDF
    Geometric flows related to shape optimization problems of Bernoulli type are investigated. The evolution law is the sum of a curvature term and a nonlocal term of Hele-Shaw type. We introduce generalized set solutions, the definition of which is widely inspired by viscosity solutions. The main result is an inclusion preservation principle for generalized solutions. As a consequence, we obtain existence, uniqueness and stability of solutions. Asymptotic behavior for the flow is discussed: we prove that the solutions converge to a generalized Bernoulli exterior free boundary problem

    A Replica Inference Approach to Unsupervised Multi-Scale Image Segmentation

    Full text link
    We apply a replica inference based Potts model method to unsupervised image segmentation on multiple scales. This approach was inspired by the statistical mechanics problem of "community detection" and its phase diagram. Specifically, the problem is cast as identifying tightly bound clusters ("communities" or "solutes") against a background or "solvent". Within our multiresolution approach, we compute information theory based correlations among multiple solutions ("replicas") of the same graph over a range of resolutions. Significant multiresolution structures are identified by replica correlations as manifest in information theory overlaps. With the aid of these correlations as well as thermodynamic measures, the phase diagram of the corresponding Potts model is analyzed both at zero and finite temperatures. Optimal parameters corresponding to a sensible unsupervised segmentation correspond to the "easy phase" of the Potts model. Our algorithm is fast and shown to be at least as accurate as the best algorithms to date and to be especially suited to the detection of camouflaged images.Comment: 26 pages, 22 figure

    Extended Smoothed Boundary Method for Solving Partial Differential Equations with General Boundary Conditions on Complex Boundaries

    Full text link
    In this article, we describe an approach for solving partial differential equations with general boundary conditions imposed on arbitrarily shaped boundaries. A continuous function, the domain parameter, is used to modify the original differential equations such that the equations are solved in the region where a domain parameter takes a specified value while boundary conditions are imposed on the region where the value of the domain parameter varies smoothly across a short distance. The mathematical derivations are straightforward and generically applicable to a wide variety of partial differential equations. To demonstrate the general applicability of the approach, we provide four examples herein: (1) the diffusion equation with both Neumann and Dirichlet boundary conditions; (2) the diffusion equation with both surface diffusion and reaction; (3) the mechanical equilibrium equation; and (4) the equation for phase transformation with the presence of additional boundaries. The solutions for several of these cases are validated against corresponding analytical and semi-analytical solutions. The potential of the approach is demonstrated with five applications: surface-reaction-diffusion kinetics with a complex geometry, Kirkendall-effect-induced deformation, thermal stress in a complex geometry, phase transformations affected by substrate surfaces, and a self-propelled droplet.Comment: This document is the revised version of arXiv:0912.1288v

    Characterizing Width Uniformity by Wave Propagation

    Full text link
    This work describes a novel image analysis approach to characterize the uniformity of objects in agglomerates by using the propagation of normal wavefronts. The problem of width uniformity is discussed and its importance for the characterization of composite structures normally found in physics and biology highlighted. The methodology involves identifying each cluster (i.e. connected component) of interest, which can correspond to objects or voids, and estimating the respective medial axes by using a recently proposed wavefront propagation approach, which is briefly reviewed. The distance values along such axes are identified and their mean and standard deviation values obtained. As illustrated with respect to synthetic and real objects (in vitro cultures of neuronal cells), the combined use of these two features provide a powerful description of the uniformity of the separation between the objects, presenting potential for several applications in material sciences and biology.Comment: 14 pages, 23 figures, 1 table, 1 referenc

    Combining Contrast Invariant L1 Data Fidelities with Nonlinear Spectral Image Decomposition

    Get PDF
    This paper focuses on multi-scale approaches for variational methods and corresponding gradient flows. Recently, for convex regularization functionals such as total variation, new theory and algorithms for nonlinear eigenvalue problems via nonlinear spectral decompositions have been developed. Those methods open new directions for advanced image filtering. However, for an effective use in image segmentation and shape decomposition, a clear interpretation of the spectral response regarding size and intensity scales is needed but lacking in current approaches. In this context, L1L^1 data fidelities are particularly helpful due to their interesting multi-scale properties such as contrast invariance. Hence, the novelty of this work is the combination of L1L^1-based multi-scale methods with nonlinear spectral decompositions. We compare L1L^1 with L2L^2 scale-space methods in view of spectral image representation and decomposition. We show that the contrast invariant multi-scale behavior of L1TVL^1-TV promotes sparsity in the spectral response providing more informative decompositions. We provide a numerical method and analyze synthetic and biomedical images at which decomposition leads to improved segmentation.Comment: 13 pages, 7 figures, conference SSVM 201
    corecore