3,129 research outputs found
Analysis of the Clearing Diversity-Preserving Mechanism
Clearing is a niching method inspired by the principle of assigning the available resources among a subpopulation to a single individual. The clearing procedure supplies these resources only to the best individual of each subpopulation: the winner. So far, its analysis has been focused on experimental approaches that have shown that clearing is a powerful diversity mechanism. We use empirical analysis to highlight some of the characteristics that makes it a useful mechanism and runtime analysis to explain how and why it is a powerful method. We prove that a (mu+1) EA with large enough population size and a phenotypic distance function always succeeds in optimising all functions of unitation for small niches in polynomial time, while a genotypic distance function requires exponential time. Finally, we prove that a (mu+1) EA with phenotypic and genotypic distances is able to find both optima in TWOMAX for large niches in polynomial expected time
Using Virtual Observatory techniques to search for Adaptive Optics suitable AGN
Until recently, it has been possible only for nearby galaxies to study the
scaling relations between central black hole and host galaxy in detail. Because
of the small number densities at low redshift, (luminous) AGN are
underrepresented in such detailed studies. The advent of adaptive optics (AO)
at large telescopes helps overcoming this hurdle, allowing to reach small
linear scales over a wide range in redshift. Finding AO-suitable targets, i.e.,
AGN having a nearby reference star, and carrying out an initial multiwavelength
classification is an excellent use case for the Virtual Observatory. We present
our Virtual-Observatory approach to select an AO-suitable catalog of
X-ray-emitting AGN at redshifts 0.1<z<1.Comment: 4 pages, 5 figures, submitted to "EURO-VO AIDA workshop:
Multiwavelength astronomy and Virtual Observatory", ESAC, Spain, 1-3 Dec.
200
Speeding Up Evolutionary Multi-objective Optimisation Through Diversity-Based Parent Selection
Parent selection in evolutionary algorithms for multi-objective optimization is usually performed by dominance mechanisms or indicator functions that prefer non-dominated points, while the reproduction phase involves the application of diversity mechanisms or other methods to achieve a good spread of the population along the Pareto front. We propose to refine the parent selection on evolutionary multi-objective optimization with diversity-based metrics. The aim is to focus on individuals with a high diversity contribution located in poorly explored areas of the search space, so the chances of creating new non-dominated individuals are better than in highly populated areas. We show by means of rigorous runtime analysis that the use of diversity-based parent selection mechanisms in the Simple Evolutionary Multi-objective Optimiser (SEMO) and Global SEMO for the well known bi-objective functions OneMinMax and Lotz can significantly improve their performance. Our theoretical results are accompanied by additional experiments that show a correspondence between theory and empirical results
Effect of alloying on mechanical properties of as cast ferritic nodular cast irons
The development of low temperature applications for ferritic nodular cast irons calls for improved materials in the as cast state, e.g. for off-shore windmills components. Within this line of work, a series of 68 castings were prepared with the same casting procedure and slight changes in composition. The tensile properties at room temperature, as well as the impact energy for rupture at room temperature, 220 °C and 240 °C, were measured. Outputs from multivariate analysis performed on the data are then discussed and compared to literature results, putting emphasis on the properties of the ferritic matrix
Target-site and non-target-site resistance mechanisms to ALS inhibiting herbicides in Papaver rhoeas
Target-site and non-target-site resistance mechanisms to ALS inhibitors were investigated in multiple resistant (tribenuron-methyl and 2,4-D) and only 2,4-D resistant, Spanish corn poppy populations. Six amino-acid replacements at the Pro197 position (Ala197, Arg197, His197, Leu197, Thr197 and Ser197) were found in three multiple resistant populations. These replacements were responsible for the high tribenuron-methyl resistance response, and some of them, especially Thr197 and Ser197, elucidated the cross-resistant pattern for imazamox and florasulam, respectively. Mutations outside of the conserved regions of the ALS gene (Gly427 and Leu648) were identified, but not related to resistance response. Higher mobility of labeled tribenuron-methyl in plants with multiple resistance was, however, similar to plants with only 2,4-D resistance, indicating the presence of non-target-site resistance mechanisms (NTSR). Metabolism studies confirmed the presence of a hydroxy imazamox metabolite in one of the populations. Lack of correlation between phenotype and genotype in plants treated with florasulam or imazamox, non-mutated plants surviving imazamox, tribenuron-methyl translocation patterns and the presence of enhanced metabolism revealed signs of the presence of NTSR mechanisms to ALS inhibitors in this species. On this basis, selection pressure with ALS non-SU inhibitors bears the risk of promoting the evolution of NTSR mechanisms in corn poppy.The authors gratefully acknowledge Du Pont (C14049 and C16006) for funding the experiments. They thank J.S. Notter, Y. Romano, E. Edo and D. Camacho for their help in trials. Special thanks to A.M. Rojano Delgado for performing the metabolism experiments
Interaction of hydrated cations with mica-n (n = 2, 3 and 4) surface
High charged swelling micas, with layer charge between 2 and 4, have been found to readily swell with water, and complete cation exchange (CEC) can be achieved. Because of their high CEC, applications like radioactive cation fixation or removal of heavy metal cations from wastewater were proposed. Their applicability can be controlled by the location of the interlayer cation in a confined space with a high electric field. In synthetic brittle micas, the interlayer cation has a low water coordination number; therefore, their coordination sphere would be completed by the basal oxygen of the tetrahedral layer as inner-sphere complexes (ISC). However, no direct evidence of these complexes formation in brittle micas has been reported yet. In this contribution, we mainly focus on the understanding the mechanisms that provoke the formation of ISC in high charge swelling micas, Mica-n. A whole series of cations (X) were used to explore the influence of the charge and size of the interlayer cation. Three brittle swelling micas, Mica-n (n = 4, 3 and 2), were selected in order to analyze the influence of the layer charge in the formation of ISC. The contribution of the ISC has been analyzed thorough the evolution of the 060 reflection and the changes in the short-range order of the tetrahedral cations will be followed 29Si and 27Al MAS NMR. The results showed that ISC was favored in X-Mica-4 and that provoked a high distortion angle between the Si-Al tetrahedra. When the content of aluminum decreases, the electrostatic forces between the layers are relaxed, and the hydrated cations did not interact so strongly with the tetrahedral sheet, having the opportunity to complete their hydration sphere. © 2014 American Chemical Society.Peer Reviewe
Implementation and Performance of the tau trigger in the ATLAS experiment
Triggering on hadronic taus at the LHC is a difficult task due to the high rate and occupancy of the events. On the other hand, the tau trigger increases the discovery potential of ATLAS in many physics channels, among others the Standard Model or SuperSymmetric Higgs (charged or neutrals) production. In order to cope with the rate and optimize the efficiency on important physics channels, the results of the current simulation studies indicate that the ATLAS tau trigger should be used either with relatively high transverse momentum thresholds alone, or with more relaxed threshold requirements in combination with other triggers, like the missing transverse energy trigger or a leptonic or jet trigger. In this contribution we describe the ATLAS tau trigger, and we present some of the current results from the simulation studies, focusing both on early physics and on physics at high luminosity
Underlying Resistance Mechanisms in the Cynosurus echinatus Biotype to Acetyl CoA Carboxylase-Inhibiting Herbicides
Hedgehog dogtail (Cynosurus echinatus) is an annual grass, native to Europe, but also widely distributed in North and South America, South Africa and Australia. Two hedgehog dogtail biotypes, one diclofop-methyl (DM)-resistant and one DM-susceptible were studied in detail for experimental dose-response resistance mechanisms. Herbicide rates that inhibited shoot growth by 50% (GR50) were determined for DM, being the resistance factor (GR50R/GR50S) of 43.81. When amitrole (Cyt. P450 inhibitor) was applied before treatment with DM, the R biotype growth was significantly inhibited (GR50 of 1019.9 g ai ha-1) compared with the GR50 (1484.6 g ai ha-1) found for the R biotype without pretreatment with amitrole. However, GR50 values for S biotype do not vary with or without amitrole pretreatment. Dose-response experiments carried out to evaluate cross-resistance, showed resistance to aryloxyphenoxypropionate (APP), cyclohexanodione (CHD) and phenylpyrazoline (PPZ) inhibiting herbicides. Both R and S biotypes had a similar 14C-DM uptake and translocation. The herbicide was poorly distributed among leaves, the rest of the shoot and roots with unappreciable acropetal and/or basipetal DM translocation at 96 HAT. The metabolism of 14C-DM, D-acid and D-conjugate metabolites were identified by thin-layer chromatography. The results showed that DM resistance in C. echinatus is likely due to enhanced herbicide metabolism, involving Cyt. P450 as was demonstrated by indirect assays (amitrole pretreatment). The ACCase in vitro assays showed that the target site was very sensitive to APP, CHD and PPZ herbicides in the C. echinatus S biotype, while the R biotype was insensitive to the previously mentioned herbicides. DNA sequencing studies confirmed that C. echinatus cross-resistance to ACCase inhibitors has been conferred by specific ACCase double point mutations Ile-2041-Asn and Cys-2088-Arg
- …
