525 research outputs found

    Evidence for a Finite Temperature Insulator

    Full text link
    In superconductors the zero-resistance current-flow is protected from dissipation at finite temperatures (T) by virtue of the short-circuit condition maintained by the electrons that remain in the condensed state. The recently suggested finite-T insulator and the "superinsulating" phase are different because any residual mechanism of conduction will eventually become dominant as the finite-T insulator sets-in. If the residual conduction is small it may be possible to observe the transition to these intriguing states. We show that the conductivity of the high magnetic-field insulator terminating superconductivity in amorphous indium-oxide exhibits an abrupt drop, and seem to approach a zero conductance at T<0.04 K. We discuss our results in the light of theories that lead to a finite-T insulator

    The role of science in physical natural hazard assessment : report to the UK Government by the Natural Hazard Working Group

    Get PDF
    Following the tragic Asian tsunami on 26 December 2004, the Prime Minister asked the Government’s Chief Scientific Adviser, Sir David King, to convene a group of experts (the Natural Hazard Working Group) to advise on the mechanisms that could and should be established for the detection and early warning of global physical natural hazards. 2. The Group was asked to examine physical hazards which have high global or regional impact and for which an appropriate early warning system could be put in place. It was also asked to consider the global natural hazard frameworks currently in place and under development and their effectiveness in using scientific evidence; to consider whether there is an existing appropriate international body to pull together the international science community to advise governments on the systems that need to be put in place, and to advise on research needed to fill current gaps in knowledge. The Group was asked to make recommendations on whether a new body was needed, or whether other arrangements would be more effective

    The impact of ischemic stroke on connectivity gradients

    No full text
    The functional organization of the brain can be represented as a low-dimensional space that reflects its macroscale hierarchy. The dimensions of this space, described as connectivity gradients, capture the similarity of areas' connections along a continuous space. Studying how pathological perturbations with known effects on functional connectivity affect these connectivity gradients provides support for their biological relevance. Previous work has shown that localized lesions cause widespread functional connectivity alterations in structurally intact areas, affecting a network of interconnected regions. By using acute stroke as a model of the effects of focal lesions on the connectome, we apply the connectivity gradient framework to depict how functional reorganization occurs throughout the brain, unrestricted by traditional definitions of functional network boundaries. We define a three-dimensional connectivity space template based on functional connectivity data from healthy controls. By projecting lesion locations into this space, we demonstrate that ischemic strokes result in dimension-specific alterations in functional connectivity over the first week after symptom onset. Specifically, changes in functional connectivity were captured along connectivity Gradients 1 and 3. The degree of functional connectivity change was associated with the distance from the lesion along these connectivity gradients (a measure of functional similarity) regardless of the anatomical distance from the lesion. Together, these results provide support for the biological validity of connectivity gradients and suggest a novel framework to characterize connectivity alterations after stroke

    Unifying Parsimonious Tree Reconciliation

    Full text link
    Evolution is a process that is influenced by various environmental factors, e.g. the interactions between different species, genes, and biogeographical properties. Hence, it is interesting to study the combined evolutionary history of multiple species, their genes, and the environment they live in. A common approach to address this research problem is to describe each individual evolution as a phylogenetic tree and construct a tree reconciliation which is parsimonious with respect to a given event model. Unfortunately, most of the previous approaches are designed only either for host-parasite systems, for gene tree/species tree reconciliation, or biogeography. Hence, a method is desirable, which addresses the general problem of mapping phylogenetic trees and covering all varieties of coevolving systems, including e.g., predator-prey and symbiotic relationships. To overcome this gap, we introduce a generalized cophylogenetic event model considering the combinatorial complete set of local coevolutionary events. We give a dynamic programming based heuristic for solving the maximum parsimony reconciliation problem in time O(n^2), for two phylogenies each with at most n leaves. Furthermore, we present an exact branch-and-bound algorithm which uses the results from the dynamic programming heuristic for discarding partial reconciliations. The approach has been implemented as a Java application which is freely available from http://pacosy.informatik.uni-leipzig.de/coresym.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    COVID-19 publications: Database coverage, citations, readers, tweets, news, Facebook walls, Reddit posts

    Get PDF
    © 2020 The Authors. Published by MIT Press. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1162/qss_a_00066The COVID-19 pandemic requires a fast response from researchers to help address biological, medical and public health issues to minimize its impact. In this rapidly evolving context, scholars, professionals and the public may need to quickly identify important new studies. In response, this paper assesses the coverage of scholarly databases and impact indicators during 21 March to 18 April 2020. The rapidly increasing volume of research, is particularly accessible through Dimensions, and less through Scopus, the Web of Science, and PubMed. Google Scholar’s results included many false matches. A few COVID-19 papers from the 21,395 in Dimensions were already highly cited, with substantial news and social media attention. For this topic, in contrast to previous studies, there seems to be a high degree of convergence between articles shared in the social web and citation counts, at least in the short term. In particular, articles that are extensively tweeted on the day first indexed are likely to be highly read and relatively highly cited three weeks later. Researchers needing wide scope literature searches (rather than health focused PubMed or medRxiv searches) should start with Dimensions (or Google Scholar) and can use tweet and Mendeley reader counts as indicators of likely importance

    Electric breakdown effect in the current-voltage characteristics of amorphous indium oxide thin films near the superconductor-insulator transition

    Full text link
    Current-voltage characteristics in the insulator bordering superconductivity in disordered thin films exhibit current jumps of several orders of magnitude due to the development of a thermally bistable electronic state at very low temperatures. In this high-resolution study we find that the jumps can be composed of many (up to 100) smaller jumps that appear to be random. This indicates that inhomogeneity develops near the transition to the insulator and that the current breakdown proceed via percolative paths spanning from one electrode to the other.Comment: 5 pages, 4 figure

    Stable isotope analysis provides new information on winter habitat use of declining avian migrants that is relevant to their conservation

    Get PDF
    Winter habitat use and the magnitude of migratory connectivity are important parameters when assessing drivers of the marked declines in avian migrants. Such information is unavailable for most species. We use a stable isotope approach to assess these factors for three declining African-Eurasian migrants whose winter ecology is poorly known: wood warbler Phylloscopus sibilatrix, house martin Delichon urbicum and common swift Apus apus. Spatially segregated breeding wood warbler populations (sampled across a 800 km transect), house martins and common swifts (sampled across a 3,500 km transect) exhibited statistically identical intra-specific carbon and nitrogen isotope ratios in winter grown feathers. Such patterns are compatible with a high degree of migratory connectivity, but could arise if species use isotopically similar resources at different locations. Wood warbler carbon isotope ratios are more depleted than typical for African-Eurasian migrants and are compatible with use of moist lowland forest. The very limited variance in these ratios indicates specialisation on isotopically restricted resources, which may drive the similarity in wood warbler populations' stable isotope ratios and increase susceptibility to environmental change within its wintering grounds. House martins were previously considered to primarily use moist montane forest during the winter, but this seems unlikely given the enriched nature of their carbon isotope ratios. House martins use a narrower isotopic range of resources than the common swift, indicative of increased specialisation or a relatively limited wintering range; both factors could increase house martins' vulnerability to environmental change. The marked variance in isotope ratios within each common swift population contributes to the lack of population specific signatures and indicates that the species is less vulnerable to environmental change in sub-Saharan Africa than our other focal species. Our findings demonstrate how stable isotope research can contribute to understanding avian migrants' winter ecology and conservation status

    Beyond representing orthology relations by trees

    Get PDF
    Reconstructing the evolutionary past of a family of genes is an important aspect of many genomic studies. To help with this, simple relations on a set of sequences called orthology relations may be employed. In addition to being interesting from a practical point of view they are also attractive from a theoretical perspective in that e.\,g.\,a characterization is known for when such a relation is representable by a certain type of phylogenetic tree. For an orthology relation inferred from real biological data it is however generally too much to hope for that it satisfies that characterization. Rather than trying to correct the data in some way or another which has its own drawbacks, as an alternative, we propose to represent an orthology relation δ\delta in terms of a structure more general than a phylogenetic tree called a phylogenetic network. To compute such a network in the form of a level-1 representation for δ\delta, we formalize an orthology relation in terms of the novel concept of a symbolic 3- dissimilarity which is motivated by the biological concept of a ``cluster of orthologous groups'', or COG for short. For such maps which assign symbols rather that real values to elements, we introduce the novel {\sc Network-Popping} algorithm which has several attractive properties. In addition, we characterize an orthology relation δ\delta on some set XX that has a level-1 representation in terms of eight natural properties for δ\delta as well as in terms of level-1 representations of orthology relations on certain subsets of XX

    Prognostic and Mechanistic Potential of Progesterone Sulfates in Intrahepatic Cholestasis of Pregnancy and Pruritus Gravidarum

    No full text
    A challenge in obstetrics is to distinguish pathological symptoms from those associated with normal changes of pregnancy, typified by the need to differentiate whether gestational pruritus of the skin is an early symptom of intrahepatic cholestasis of pregnancy (ICP) or due to benign pruritus gravidarum. ICP is characterized by raised serum bile acids and complicated by spontaneous preterm labor and stillbirth. A biomarker for ICP would be invaluable for early diagnosis and treatment and to enable its differentiation from other maternal diseases. Three progesterone sulfate compounds, whose concentrations have not previously been studied, were newly synthesized and assayed in the serum of three groups of ICP patients and found to be significantly higher in ICP at 9-15 weeks of gestation and prior to symptom onset (group 1 cases/samples: ICP n = 35/80, uncomplicated pregnancy = 29/100), demonstrating that all three progesterone sulfates are prognostic for ICP. Concentrations of progesterone sulfates were associated with itch severity and, in combination with autotaxin, distinguished pregnant women with itch that would subsequently develop ICP from pruritus gravidarum (group 2: ICP n = 41, pruritus gravidarum n = 14). In a third group of first-trimester samples all progesterone sulfates were significantly elevated in serum from low-risk asymptomatic women who subsequently developed ICP (ICP/uncomplicated pregnancy n = 54/51). Finally, we show mechanistically that progesterone sulfates mediate itch by evoking a Tgr5-dependent scratch response in mice. Conclusion: Our discovery that sulfated progesterone metabolites are a prognostic indicator for ICP will help predict onset of ICP and distinguish it from benign pruritus gravidarum, enabling targeted obstetric care to a high-risk population. Delineation of a progesterone sulfate-TGR5 pruritus axis identifies a therapeutic target for itch management in ICP
    corecore