13,239 research outputs found
Decoherence of spin echoes
We define a quantity, the so-called purity fidelity, which measures the rate
of dynamical irreversibility due to decoherence, observed e.g in echo
experiments, in the presence of an arbitrary small perturbation of the total
(system + environment) Hamiltonian. We derive a linear response formula for the
purity fidelity in terms of integrated time correlation functions of the
perturbation. Our relation predicts, similarly to the case of fidelity decay,
faster decay of purity fidelity the slower decay of time correlations is. In
particular, we find exponential decay in quantum mixing regime and faster,
initially quadratic and later typically gaussian decay in the regime of
non-ergodic, e.g. integrable quantum dynamics. We illustrate our approach by an
analytical calculation and numerical experiments in the Ising spin 1/2 chain
kicked with tilted homogeneous magnetic field where part of the chain is
interpreted as a system under observation and part as an environment.Comment: 22 pages, 10 figure
Supersymmetry of Noncompact MQCD-like Membrane Instantons and Heat Kernel Asymptotics
We perform a heat kernel asymptotics analysis of the nonperturbative
superpotential obtained from wrapping of an M2-brane around a supersymmetric
noncompact three-fold embedded in a (noncompact) G_2-manifold as obtained in
[1], the three-fold being the one relevant to domain walls in Witten's MQCD
[2], in the limit of small "zeta", a complex constant that appears in the
Riemann surfaces relevant to defining the boundary conditions for the domain
wall in MQCD. The MQCD-like configuration is interpretable, for small but
non-zero zeta as a noncompact/"large" open membrane instanton, and for
vanishing zeta, as the type IIA D0-brane (for vanishing M-theory cicle radius).
We find that the eta-function Seeley de-Witt coefficients vanish, and we get a
perfect match between the zeta-function Seeley de-Witt coefficients (up to
terms quadratic in zeta) between the Dirac-type operator and one of the two
Laplace-type operators figuring in the superpotential. This is an extremely
strong signature of residual supersymmetry for the nonperturbative
configurations in M-theory considered in this work.Comment: 21 pages, LaTeX; v3: several clarifying remarks added, to appear in
JHE
Particle Currents in a Space-Time dependent and CP-violating Higgs Background: a Field Theory Approach
Motivated by cosmological applications like electroweak baryogenesis, we
develop a field theoretic approach to the computation of particle currents on a
space-time dependent and CP-violating Higgs background. We consider the
Standard Model model with two Higgs doublets and CP violation in the scalar
sector, and compute both fermionic and Higgs currents by means of an expansion
in the background fields. We discuss the gauge dependence of the results and
the renormalization of the current operators, showing that in the limit of
local equilibrium, no extra renormalization conditions are needed in order to
specify the system completely.Comment: 21 pages, LaTeX file, uses epsf.sty. 4 figures available as a
compressed .ep
A New Source for Electroweak Baryogenesis in the MSSM
One of the most experimentally testable explanations for the origin of the
baryon asymmetry of the universe is that it was created during the electroweak
phase transition, in the minimal supersymmetric standard model. Previous
efforts have focused on the current for the difference of the two Higgsino
fields, , as the source of biasing sphalerons to create the baryon
asymmetry. We point out that the current for the orthogonal linear combination,
, is larger by several orders of magnitude. Although this increases
the efficiency of electroweak baryogenesis, we nevertheless find that large
CP-violating angles are required to get a large enough baryon
asymmetry.Comment: 4 pages, 2 figures; numerical error corrected, which implies that
large CP violation is needed to get observed baryon asymmetry. We improved
solution of diffusion equations, and computed more accurate values for
diffusion coefficient and damping rate
Two-point correlation properties of stochastic "cloud processes''
We study how the two-point density correlation properties of a point particle
distribution are modified when each particle is divided, by a stochastic
process, into an equal number of identical "daughter" particles. We consider
generically that there may be non-trivial correlations in the displacement
fields describing the positions of the different daughters of the same "mother"
particle, and then treat separately the cases in which there are, or are not,
correlations also between the displacements of daughters belonging to different
mothers. For both cases exact formulae are derived relating the structure
factor (power spectrum) of the daughter distribution to that of the mother.
These results can be considered as a generalization of the analogous equations
obtained in ref. [1] (cond-mat/0409594) for the case of stochastic displacement
fields applied to particle distributions. An application of the present results
is that they give explicit algorithms for generating, starting from regular
lattice arrays, stochastic particle distributions with an arbitrarily high
degree of large-scale uniformity.Comment: 14 pages, 3 figure
The influence of the strength of bone on the deformation of acetabular shells : a laboratory experiment in cadavers
Date of Acceptance: 24/08/2014 ©2015 The British Editorial Society of Bone & Joint Surgery. The authors would like to thank N. Taylor (3D Measurement Company) for his work with regard to data acquisition and processing of experimental data. We would also like to thank Dr A. Blain of Newcastle University for performing the statistical analysis The research was supported by the NIHR Newcastle Biomedical Research Centre. The authors P. Dold, M. Flohr and R. Preuss are employed by Ceramtec GmbH. Martin Bone received a salary from the joint fund. The author or one or more of the authors have received or will receive benefits for personal or professional use from a commercial party related directly or indirectly to the subject of this article. This article was primary edited by G. Scott and first proof edited by J. Scott.Peer reviewedPostprin
Genetic characterization of influenza A(H3N2) viruses circulating in coastal Kenya, 2009-2017
Background
Influenza viruses evolve rapidly and undergo immune driven selection, especially in the hemagglutinin (HA) protein. We report amino acid changes affecting antigenic epitopes and receptor‐binding sites of A(H3N2) viruses circulating in Kilifi, Kenya, from 2009 to 2017.
Methods
Next‐generation sequencing (NGS) was used to generate A(H3N2) virus genomic data from influenza‐positive specimens collected from hospital admissions and health facility outpatients presenting with acute respiratory illness to health facilities within the Kilifi Health and Demographic Surveillance System. Full‐length HA sequences were utilized to characterize A(H3N2) virus genetic and antigenic changes.
Results
From 186 (90 inpatient and 96 outpatient) influenza A virus‐positive specimens processed, 101 A(H3N2) virus whole genomes were obtained. Among viruses identified in inpatient specimens from 2009 to 2015, divergence of circulating A(H3N2) viruses from the vaccine strains A/Perth/16/2009, A/Texas/50/2012, and A/Switzerland/9715293/2013 formed 6 genetic clades (A/Victoria/208/2009‐like, 3B, 3C, 3C.2a, 4, and 7). Among viruses identified in outpatient specimens from 2015 to 2017, divergence of circulating A(H3N2) viruses from vaccine strain A/Hong Kong/4801/2014 formed clade 3C.2a, subclades 3C.2a2 and 3C.2a3, and subgroup 3C.2a1b. Several amino acid substitutions were associated with the continued genetic evolution of A(H3N2) strains in circulation.
Conclusions
Our results suggest continuing evolution of currently circulating A(H3N2) viruses in Kilifi, coastal Kenya and suggest the need for continuous genetic and antigenic viral surveillance of circulating seasonal influenza viruses with broad geographic representation to facilitate prompt and efficient selection of influenza strains for inclusion in future influenza vaccines
On the geometry of closed G2-structure
We give an answer to a question posed recently by R.Bryant, namely we show
that a compact 7-dimensional manifold equipped with a G2-structure with closed
fundamental form is Einstein if and only if the Riemannian holonomy of the
induced metric is contained in G2. This could be considered to be a G2 analogue
of the Goldberg conjecture in almost Kahler geometry. The result was
generalized by R.L.Bryant to closed G2-structures with too tightly pinched
Ricci tensor. We extend it in another direction proving that a compact
G2-manifold with closed fundamental form and divergence-free Weyl tensor is a
G2-manifold with parallel fundamental form. We introduce a second symmetric
Ricci-type tensor and show that Einstein conditions applied to the two Ricci
tensors on a closed G2-structure again imply that the induced metric has
holonomy group contained in G2.Comment: 14 pages, the Einstein condition in the assumptions of the Main
theorem is generalized to the assumption that the Weyl tensor is
divergence-free, clarity improved, typos correcte
Damping Rates and Mean Free Paths of Soft Fermion Collective Excitations in a Hot Fermion-Gauge-Scalar Theory
We study the transport coefficients, damping rates and mean free paths of
soft fermion collective excitations in a hot fermion-gauge-scalar plasma with
the goal of understanding the main physical mechanisms that determine transport
of chirality in scenarios of non-local electroweak baryogenesis. The focus is
on identifying the different transport coefficients for the different branches
of soft collective excitations of the fermion spectrum. These branches
correspond to collective excitations with opposite ratios of chirality to
helicity and different dispersion relations. By combining results from the hard
thermal loop (HTL) resummation program with a novel mechanism of fermion
damping through heavy scalar decay, we obtain a robust description of the
different damping rates and mean free paths for the soft collective excitations
to leading order in HTL and lowest order in the Yukawa coupling. The space-time
evolution of wave packets of collective excitations unambiguously reveals the
respective mean free paths. We find that whereas both the gauge and scalar
contribution to the damping rates are different for the different branches, the
difference of mean free paths for both branches is mainly determined by the
decay of the heavy scalar into a hard fermion and a soft collective excitation.
We argue that these mechanisms are robust and are therefore relevant for
non-local scenarios of baryogenesis either in the Standard Model or extensions
thereof.Comment: REVTeX, 19 pages, 4 eps figures, published versio
- …
