1,790 research outputs found

    Heat capacity at the glass transition

    Full text link
    A fundamental problem of glass transition is to explain the jump of heat capacity at the glass transition temperature TgT_g without asserting the existence of a distinct solid glass phase. This problem is also common to other disordered systems, including spin glasses. We propose that if TgT_g is defined as the temperature at which the liquid stops relaxing at the experimental time scale, the jump of heat capacity at TgT_g follows as a necessary consequence due to the change of system's elastic, vibrational and thermal properties. In this picture, we discuss time-dependent effects of glass transition, and identify three distinct regimes of relaxation. Our approach explains widely observed logarithmic increase of TgT_g with the quench rate and the correlation of heat capacity jump with liquid fragility

    The Glass Transition Temperature of Water: A Simulation Study

    Full text link
    We report a computer simulation study of the glass transition for water. To mimic the difference between standard and hyperquenched glass, we generate glassy configurations with different cooling rates and calculate the TT dependence of the specific heat on heating. The absence of crystallization phenomena allows us, for properly annealed samples, to detect in the specific heat the simultaneous presence of a weak pre-peak (``shadow transition''), and an intense glass transition peak at higher temperature. We discuss the implications for the currently debated value of the glass transition temperature of water. We also compare our simulation results with the Tool-Narayanaswamy-Moynihan phenomenological model.Comment: submitted to Phys. Re

    The vulnerability of public spaces: challenges for UK hospitals under the 'new' terrorist threat

    Get PDF
    This article considers the challenges for hospitals in the United Kingdom that arise from the threats of mass-casualty terrorism. Whilst much has been written about the role of health care as a rescuer in terrorist attacks and other mass-casualty crises, little has been written about health care as a victim within a mass-emergency setting. Yet, health care is a key component of any nation's contingency planning and an erosion of its capabilities would have a significant impact on the generation of a wider crisis following a mass-casualty event. This article seeks to highlight the nature of the challenges facing elements of UK health care, with a focus on hospitals both as essential contingency responders under the United Kingdom's civil contingencies legislation and as potential victims of terrorism. It seeks to explore the potential gaps that exist between the task demands facing hospitals and the vulnerabilities that exist within them

    Thermodynamic Behavior of a Model Covalent Material Described by the Environment-Dependent Interatomic Potential

    Full text link
    Using molecular dynamics simulations we study the thermodynamic behavior of a single-component covalent material described by the recently proposed Environment-Dependent Interatomic Potential (EDIP). The parameterization of EDIP for silicon exhibits a range of unusual properties typically found in more complex materials, such as the existence of two structurally distinct disordered phases, a density decrease upon melting of the low-temperature amorphous phase, and negative thermal expansion coefficients for both the crystal (at high temperatures) and the amorphous phase (at all temperatures). Structural differences between the two disordered phases also lead to a first-order transition between them, which suggests the existence of a second critical point, as is believed to exist for amorphous forms of frozen water. For EDIP-Si, however, the unusual behavior is associated not only with the open nature of tetrahedral bonding but also with a competition between four-fold (covalent) and five-fold (metallic) coordination. The unusual behavior of the model and its unique ability to simulation the liquid/amorphous transition on molecular-dynamics time scales make it a suitable prototype for fundamental studies of anomalous thermodynamics in disordeered systems.Comment: 48 pages (double-spaced), 13 figure

    The Economic Resource Receipt of New Mothers

    Get PDF
    U.S. federal policies do not provide a universal social safety net of economic support for women during pregnancy or the immediate postpartum period but assume that employment and/or marriage will protect families from poverty. Yet even mothers with considerable human and marital capital may experience disruptions in employment, earnings, and family socioeconomic status postbirth. We use the National Survey of Families and Households to examine the economic resources that mothers with children ages 2 and younger receive postbirth, including employment, spouses, extended family and social network support, and public assistance. Results show that many new mothers receive resources postbirth. Marriage or postbirth employment does not protect new mothers and their families from poverty, but education, race, and the receipt of economic supports from social networks do

    Metastable liquid-liquid phase transition in a single-component system with only one crystal phase and no density anomaly

    Get PDF
    We investigate the phase behavior of a single-component system in 3 dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature {\bf 409}, 692 (2001)] that, even with no evidences of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas--low-density liquid (LDL) critical point, and the other in a gas--high-density liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the 3-parameter space of the soft-core potential and we perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.Comment: 15 pages, 21 figure

    NQO2 is a reactive oxygen species generating off-target for acetaminophen

    Get PDF
    [Image: see text] The analgesic and antipyretic compound acetaminophen (paracetamol) is one of the most used drugs worldwide. Acetaminophen overdose is also the most common cause for acute liver toxicity. Here we show that acetaminophen and many structurally related compounds bind quinone reductase 2 (NQO2) in vitro and in live cells, establishing NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen derived reactive oxygen species, more specifically superoxide anions, in cultured cells. In humans, NQO2 is highly expressed in liver and kidney, the main sites of acetaminophen toxicity. We suggest that NQO2 mediated superoxide production may function as a novel mechanism augmenting acetaminophen toxicity

    Solidity of Viscous Liquids

    Full text link
    Recent NMR experiments on supercooled toluene and glycerol by Hinze and Bohmer show that small rotation angles dominate with only few large molecular rotations. These results are here interpreted by assuming that viscous liquids are solid-like on short length scales. A characteristic length, the "solidity length", separates solid-like behavior from liquid-like behavior.Comment: Plain RevTex file, no figure

    The science of clinical practice: disease diagnosis or patient prognosis? Evidence about "what is likely to happen" should shape clinical practice.

    Get PDF
    BACKGROUND: Diagnosis is the traditional basis for decision-making in clinical practice. Evidence is often lacking about future benefits and harms of these decisions for patients diagnosed with and without disease. We propose that a model of clinical practice focused on patient prognosis and predicting the likelihood of future outcomes may be more useful. DISCUSSION: Disease diagnosis can provide crucial information for clinical decisions that influence outcome in serious acute illness. However, the central role of diagnosis in clinical practice is challenged by evidence that it does not always benefit patients and that factors other than disease are important in determining patient outcome. The concept of disease as a dichotomous 'yes' or 'no' is challenged by the frequent use of diagnostic indicators with continuous distributions, such as blood sugar, which are better understood as contributing information about the probability of a patient's future outcome. Moreover, many illnesses, such as chronic fatigue, cannot usefully be labelled from a disease-diagnosis perspective. In such cases, a prognostic model provides an alternative framework for clinical practice that extends beyond disease and diagnosis and incorporates a wide range of information to predict future patient outcomes and to guide decisions to improve them. Such information embraces non-disease factors and genetic and other biomarkers which influence outcome. SUMMARY: Patient prognosis can provide the framework for modern clinical practice to integrate information from the expanding biological, social, and clinical database for more effective and efficient care

    Nanometer Scale Dielectric Fluctuations at the Glass Transition

    Full text link
    Using non-contact scanning probe microscopy (SPM) techniques, dielectric properties were studied on 50 nanometer length scales in poly-vinyl-acetate (PVAc) films in the vicinity of the glass transition. Low frequency (1/f) noise observed in the measurements, was shown to arise from thermal fluctuations of the electric polarization. Anomalous variations observed in the noise spectrum provide direct evidence for cooperative nano-regions with heterogeneous kinetics. The cooperative length scale was determined. Heterogeneity was long-lived only well below the glass transition for faster than average processes.Comment: 4 pages, 4 embedded PS figures, RevTeX - To appear in Phys. Rev. Let
    corecore