18,072 research outputs found
True infliximab resistance in rheumatoid arthritis: a role for lymphotoxin α?
Background: The combination of methotrexate and the anti-tumour necrosis factor (TNF) antibody infliximab is a very effective treatment for rheumatoid arthritis (RA). However, a proportion of patients are not responsive to this treatment. Inefficacy may represent a TNF independent disease or insufficient drug at the site of action.
Case report: A patient with RA resistant to repeated high dose infliximab infusions and intra-articular infliximab into an inflamed knee is described. No beneficial clinical effect was observed. Pre-injection arthroscopic biopsy of the study knee demonstrated TNF staining but also confirmed the presence of lymphotoxin (LT or TNFß) on immunohistochemistry. Subsequent treatment with etanercept (which blocks LT as well as TNF) resulted in clinical remission of disease.
Conclusion: This case suggests that resistance to TNF blockade may occur when TNF is not the dominant inflammatory cytokine and suggests that LT may have a pathogenic role in RA
The SKA as a Doorway to Angular Momentum
Angular momentum is one of the most fundamental physical quantities governing
galactic evolution. Differences in the colours, morphologies, star formation
rates and gas fractions amongst galaxies of equal stellar/baryon mass M are
potentially widely explained by variations in their specific stellar/baryon
angular momentum j. The enormous potential of angular momentum science is only
just being realised, thanks to the emergence of the first simulations of
galaxies with converged spins, paralleled by a dramatic increase in kinematic
observations. Such observations are still challenged by the fact that most of
the stellar/baryon angular momentum resides at large radii. In fact, the radius
that maximally contributes to the angular momentum of an exponential disk
(3Re-4Re) is twice as large as the radius that maximally contributes to the
disk mass; thus converged measurements of angular momentum require either
extremely deep IFS data or, alternatively, kinematic measurements of neutral
atomic hydrogen (HI), which naturally resides at the large disk radii that
dominate the angular momentum. The SKA has a unique opportunity to become the
world-leading facility for angular momentum studies due to its ability to
measure the resolved and/or global HI kinematics in very large and
well-characterised galaxy samples. These measurements will allow, for example,
(1) a very robust determination of the two-dimensional distribution of galaxies
in the (M,j)-plane, (2) the largest, systematic measurement of the relationship
between M, j, and tertiary galaxy properties, and (3) the most accurate
measurement of the large-scale distribution and environmental dependence of
angular momentum vectors, both in terms of norm and orientation. All these
measurements will represent exquisite tools to build a next generation of
galaxy evolution models.Comment: 13 pages, 5 figures, 3 table
PATENTS, R&D AND LAG EFFECTS: EVIDENCE FROM FLEXIBLE METHODS FOR COUNT PANEL DATA ON MANUFACTURING FIRMS
Hausman, Hall and Griliches (1984) and Hall, Griliches and Hausman (1986) investigated whether there was a lag in the patent-R&D relationship for the U.S. manufacturing sector using 1970¿s data. They found that there was little evidence of anything but contemporaneous movement of patents and R&D. We reexamine this important issue employing new longitudinal patent data at the firm level for the U.S. manufacturing sector from 1982 to 1992. To address unique features of the data, we estimate various distributed lag and dynamic multiplicative panel count data models. The paper also develops a new class of count panel data models based on series expansion of the distribution of individual effects. The empirical analyses show that, although results are somewhat sensitive to different estimation methods, the contemporaneous relationship between patenting and R&D expenditures continues to be rather strong, accounting for over 60% of the total R&D elasticity. Regarding the lag structure of the patents-R&D relationship, we do find a significant lag in all empirical specifications. Moreover, the estimated lag effects are higher than have previously been found, suggesting that the contribution of R&D history to current patenting has increased from the 1970¿s to the 1980¿s.Innovative activity, Patents and R&D, Individual effects, count panel data methods.
Making automation pay - cost & throughput trade-offs in the manufacture of large composite components
The automation of complex manufacturing operations can provide significant savings over manual processes, and there remains much scope for increasing automation in the production of large scale structural composites. However the relationships between driving variables are complex, and the achievable throughput rate and corresponding cost for a given design are often not apparent. The deposition rate, number of machines required and unit production rates needed are interrelated and consequently the optimum unit cost is difficult to predict. A detailed study of the costs involved for a series of composite wing cover panels with different manufacturing requirements was undertaken. Panels were sized to account for manufacturing requirements and structural load requirements allowing both manual and automated lay-up procedures to influence design. It was discovered that the introduction of automated tape lay-up can significantly reduce material unit cost, and improve material utilisation, however higher production rates are needed to see this benefit
Spectropolarimetry of the Type Ia SN 2007sr Two Months After Maximum Light
We present late time spectropolarimetric observations of SN 2007sr, obtained
with the VLT telescope at ESO Paranal Observatory when the object was 63 days
after maximum light. The late time spectrum displays strong line polarization
in the CaII absorption features. SN 2007sr adds to the case of some normal Type
Ia SNe that show high line polarization or repolarization at late times, a fact
that might be connected with the presence of high velocity features at early
times
A spectropolarimetric view on the nature of the peculiar Type I SN 2005hk
We report two spectropolarimetric observations of SN 2005hk, which is a close
copy of the "very peculiar" SN 2002cx, showing low peak luminosity, slow
decline, high ionization near peak and an unusually low expansion velocity of
only about 7,000 km s^-1. Further to the data presented by Chornock et al.,
(2006), at -4 days before maximum, we present data of this object taken on 9
November 2005 (near maximum) and 23 November (+ two weeks) that show the
continuum and most of the spectral lines to be polarized at levels of about
0.2-0.3%. At both epochs the data corresponds to the Spectropolarimetric Type
D1. The general low level of line polarization suggests that the line forming
regions for most species observed in the spectrum have a similar shape to that
of the photosphere, which deviates from a spherical symmetry by <10%. In
comparison with spectropolarimetry of Type Ia and Core-collapse SNe at similar
epochs, we find that the properties of SN 2005hk are most similar to those of
Type Ia SNe. In particular, we find the low levels of continuum and line
polarization to indicate that the explosion mechanism is approximately
spherical, with homogeneous ejecta (unlike the chemically segregated ejecta of
CCSNe). We discuss the possibility that SN 2005hk was the result of the pure
deflagration of a white dwarf and note the issues concerning this
interpretation.Comment: ApJ accepted, uses emulateapj, 16 pages, 10 figures, figures 3 and 4
update
Ejection of Supernova-Enriched Gas From Dwarf Disk Galaxies
We examine the efficiency with which supernova-enriched gas may be ejected
from dwarf disk galaxies, using a methodology previously employed to study the
self-enrichment efficiency of dwarf spheroidal systems. Unlike previous studies
that focused on highly concentrated starbursts, in the current work we consider
discrete supernova events spread throughout various fractions of the disk. We
model disk systems having gas masses of 10^8 and 10^9 solar masses with
supernova rates of 30, 300, and 3000 per Myr. The supernova events are confined
to the midplane of the disk, but distributed over radii of 0, 30, and 80% of
the disk radius, consistent with expectations for Type II supernovae. In
agreement with earlier studies, we find that the enriched material from
supernovae is largely lost when the supernovae are concentrated near the
nucleus, as expected for a starburst event. In contrast, however, we find the
loss of enriched material to be much less efficient when the supernovae occur
over even a relatively small fraction of the disk. The difference is due to the
ability of the system to relax following supernova events that occur over more
extended regions. Larger physical separations also reduce the likelihood of
supernovae going off within low-density "chimneys" swept out by previous
supernovae. We also find that, for the most distributed systems, significant
metal loss is more likely to be accompanied by significant mass loss. A
comparison with theoretical predications indicates that, when undergoing
self-regulated star formation, galaxies in the mass range considered shall
efficiently retain the products of Type II supernovae.Comment: 16 pages, 14 figures, to appear in Astrophysical Journal; higher
resolution figures available through Ap
Models for Dusty Lyman alpha Emitters at High Redshift
Models are presented for the Lyman alpha emission of dusty high-redshift
galaxies by combining the Press-Schechter formalism with a treatment of the
inhomogeneous dust distribution inside galaxies. It is found that the amount of
Lyman alpha radiation escaping from the galaxies strongly depends on the time
over which the dust is produced through stellar activity, and on the ambient
inhomogeneity of the HII regions that surround the ionizing OB stars. Good
agreement is found with recent observations, as well as previous
non-detections. Our models indicate that the dust content builds up in no more
than approximately 5x10^8 yr, the galactic HII regions are inhomogeneous with a
cloud covering factor of order unity, and the overall star formation efficiency
is at least about 5%. It is predicted that future observations can detect these
Lyman alpha galaxies upto redshifts of about 8.Comment: 16 pages, 4 figures, submitted to Ap
- …
