168 research outputs found
Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state
We propose a scheme to implement a single-mode quantum filter, which
selectively eliminates the one-photon state in a quantum state
. The vacuum state and the two photon state are
transmitted without any change. This scheme requires single-photon sources,
linear optical elements and photon detectors. Furthermore we demonstrate, how
this filter can be used to realize a two-qubit projective measurement and to
generate multi-photon polarization entangled states.Comment: revision submitted to PR
The feasible generation of entangled photon states by using linear optical elements
We present a feasible scheme to produce a polarization-entangled photon
states in a controllable way. This scheme
requires single-photon sources, linear optical elements and photon detectors.
It generates the entanglement of spatially separated photons. The interaction
takes place in the photon detectors. We also show that the same idea can be
used to produce the entangled -photon state
Comment: to appear in PR
A quantum phase gate implementation for trapped ions in thermal motion
We propose a novel scheme to implement a quantum controlled phase gate for
trapped ions in thermal motion with one standing wave laser pulse. Instead of
applying the rotating wave approximation this scheme makes use of the
counter-rotating terms of operators. We also demonstrate that the same scheme
can be used to generate maximally entangled states of trapped ions by a
single laser pulse
Scheme for the implementation of a universal quantum cloning machine via cavity-assisted atomic collisions in cavity QED
We propose a scheme to implement the universal quantum cloning
machine of Buzek et.al [Phys. Rev.A 54, 1844(1996)] in the context of cavity
QED. The scheme requires cavity-assisted collision processes between atoms,
which cross through nonresonant cavity fields in the vacuum states. The cavity
fields are only virtually excited to face the decoherence problem. That's why
the requirements on the cavity quality factor can be loosened.Comment: to appear in PR
Enhanced Joule Heating in Umbral Dots
We present a study of magnetic profiles of umbral dots (UDs) and its
consequences on the Joule heating mechanisms. Hamedivafa (2003) studied Joule
heating using vertical component of magnetic field. In this paper UDs magnetic
profile has been investigated including the new azimuthal component of magnetic
field which might explain the relatively larger enhancement of Joule heating
causing more brightness near circumference of UD.Comment: 8 pages, 1 figure, accepted in Solar Physic
Social preferences, accountability, and wage bargaining
We assess the extent of preferences for employment in a collective wage bargaining situation with heterogeneous workers. We vary the size of the union and introduce a treatment mechanism transforming the voting game into an individual allocation task. Our results show that highly productive workers do not take employment of low productive workers into account when making wage proposals, regardless of whether insiders determine the wage or all workers. The level of pro-social preferences is small in the voting game, while it increases as the game is transformed into an individual allocation task. We interpret this as an accountability effect
Controlling the near-surface superfluid density in underdoped YBa₂Cu₃O<sub>6+<i>x</i></sub> by photo-illumination
The interaction with light weakens the superconducting ground state in classical superconductors. The situation in cuprate superconductors is more complicated: illumination increases the charge carrier density, a photo-induced effect that persists below room temperature. Furthermore, systematic investigations in underdoped YBa₂Cu₃O6+x (YBCO) have shown an enhanced critical temperature Tc. Until now, studies of photo-persistent conductivity (PPC) have been limited to investigations of structural and transport properties, as well as the onset of superconductivity. Here we show how changes in the magnetic screening profile of YBCO in the Meissner state due to PPC can be determined on a nanometer scale utilizing low-energy muons. The data obtained reveal a strongly increased superfluid density within the first few tens of nanometers from the sample surface. Our findings suggest a non-trivial modification of the near-surface band structure and give direct evidence that the superfluid density of YBCO can be controlled by light illumination
Scheme for the generation of an entangled four-photon W-state
We present a scheme to produce an entangled four-photon W-state by using
linear optical elements. The symmetrical setup of linear optical elements
consists of four beam splitters, four polarization beam splitters and four
mirrors. A photon EPR-pair and two single photons are required as the input
modes. The projection on the W-state can be made by a four-photon coincidence
measurement. Further, we show that by means of a horizontally oriented
polarizer in front of one detector the W-state of three photons can be
generated.Comment: titile is changed, to appear in PR
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
The chromosphere is a thin layer of the solar atmosphere that bridges the
relatively cool photosphere and the intensely heated transition region and
corona. Compressible and incompressible waves propagating through the
chromosphere can supply significant amounts of energy to the interface region
and corona. In recent years an abundance of high-resolution observations from
state-of-the-art facilities have provided new and exciting ways of
disentangling the characteristics of oscillatory phenomena propagating through
the dynamic chromosphere. Coupled with rapid advancements in
magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly
investigate the role waves play in supplying energy to sustain chromospheric
and coronal heating. Here, we review the recent progress made in
characterising, categorising and interpreting oscillations manifesting in the
solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
Myomegalin is a novel protein of the golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase
Subcellular targeting of the components of the cAMP-dependent pathway is thought to be essential for intracellular signaling. Here we have identified a novel protein, named myomegalin, that interacts with the cyclic nucleotide phosphodiesterase PDE4D, thereby targeting it to particulate structures. Myomegalin is a large 2,324-amino acid protein mostly composed of α-helical and coiled-coil structures, with domains shared with microtubule-associated proteins, and a leucine zipper identical to that found in the Drosophila centrosomin. Transcripts of 7.5-8 kilobases were present in most tissues, whereas a short mRNA of 2.4 kilobases was detected only in rat testis. A third splicing variant was expressed predominantly in rat heart. Antibodies against the deduced sequence recognized particulate myomegalin proteins of 62 kDa in testis and 230-250 kDa in heart and skeletal muscle. Immunocytochemistry and transfection studies demonstrate colocalization of PDE4D and myomegalin in the Golgi/centrosomal area of cultured cells, and in sarcomeric structures of skeletal muscle. Myomegalin expressed in COS-7 cells coimmunoprecipitated with PDE4D3 and sequestered it to particulate structures. These findings indicate that myomegalin is a novel protein that functions as an anchor to localize components of the cAMP-dependent pathway to the Golgi/centrosomal region of the cell
- …
