122 research outputs found

    Thermal relaxation of magnetic clusters in amorphous Hf_{57}Fe_{43} alloy

    Full text link
    The magnetization processes in binary magnetic/nonmagnetic amorphous alloy Hf_{57}Fe_{43} are investigated by the detailed measurements of magnetic hysteresis loops, temperature dependence of magnetization, relaxation of magnetization and magnetic ac susceptibility, including a nonlinear term. Blocking of magnetic moments at lower temperatures is accompanied with the slow relaxation of magnetization and magnetic hysteresis loops. All of the observed properties are explained with the superparamagnetic behaviour of the single domain magnetic clusters inside the nonmagnetic host, their blocking by the anisotropy barriers and thermal fluctuation over the barriers accompanied by relaxation of magnetization. From magnetic viscosity analysis based on thermal relaxation over the anisotropy barriers it is found out that magnetic clusters occupy the characteristic volume from 25 up to 200 nm3 . The validity of the superparamagnetic model of Hf_{57}Fe_{43} is based on the concentration of iron in the Hf_{100-x}Fe_{43} system that is just below the threshold for the long range magnetic ordering. This work throws more light on magnetic behaviour of other amorphous alloys, too

    Site-selective quantum correlations revealed by magnetic anisotropy in the tetramer system SeCuO3

    Get PDF
    We present the investigation of a monoclinic compound SeCuO3 using x-ray powder diffraction, magnetization, torque and electron-spin-resonance (ESR). Structurally based analysis suggests that SeCuO3 can be considered as a 3D network of tetramers. The values of intra-tetramer exchange interactions are extracted from the temperature dependence of the susceptibility and amount to ~200 K. The inter-tetramer coupling leads to the development of long-range antiferromagnetic order at TN = 8 K. An unusual temperature dependence of the effective g-tensors is observed, accompanied with a rotation of macroscopic magnetic axes. We explain this unique observation as due to site-selective quantum correlations

    Low temperature magnetic transition in RuSr2EuCeCu2O10 ruthenocuprate

    Full text link
    A new magnetic transition in the ruthenocuprate parent compound RuSr2EuCeCu2O10 has been observed below 10 K. It shows up only as a kink in the imaginary part of the ac susceptibility and exhibits a pronounced frequency dependence. At the same time, the real part of the ac susceptibility and the dc magnetization study show very little change in the same temperature window suggesting only a minor fraction of the material to be involved in the transition. Frequency dependence shows excellent agreement with the predictions of the Arrhenius law known to describe well the dynamics of the superparamagnetic particles. The same type of the investigation on the RuSr2Eu1.1Ce0.9Cu2O10 composition showed no evidence of the similar transition, which points to a possible intrinsic behavior.Comment: to be published in Physica

    Magnetic excitations and electronic interactions in Sr2_2CuTeO6_6: a spin-1/2 square lattice Heisenberg antiferromagnet

    Get PDF
    Sr2_2CuTeO6_6 presents an opportunity for exploring low-dimensional magnetism on a square lattice of S=1/2S=1/2 Cu2+^{2+} ions. We employ ab initio multi-reference configuration interaction calculations to unravel the Cu2+^{2+} electronic structure and to evaluate exchange interactions in Sr2_2CuTeO6_6. The latter results are validated by inelastic neutron scattering using linear spin-wave theory and series-expansion corrections for quantum effects to extract true coupling parameters. Using this methodology, which is quite general, we demonstrate that Sr2_2CuTeO6_6 is an almost realization of a nearest-neighbor Heisenberg antiferromagnet but with relatively weak coupling of 7.18(5) meV.Comment: 10 pages, 7 figure

    Interplay between the structural and magnetic probes in the elucidation of the structure of a novel 2D layered V_4O_4(OH)_2(O_2CC_6H_4CO_2)_4·DMF

    Get PDF
    The title compound has been synthesized under solvothermal conditions by reacting vanadium(V) oxytriisopropoxide with terephthalic acid in N,N-dimethylformamide. A combination of synchrotron powder diffraction, infrared spectroscopy, scanning and transmission electron microscopy, thermal and chemical analysis elucidated the chemical, structural and microstructural features of new 2D layered inorganic-organic framework. Due to the low-crystallinity of the final material, its crystal structure has been solved from synchrotron X-ray powder diffraction data using a direct space global optimization technique and subsequent constraint Rietveld refinement. [V_4O_4(OH)_2(O_2CC_6H_4CO_2)_4•DMF] crystallizes in the monoclinic system (space group P2/m (No. 10)); cell parameters: a = 20.923(4), b = 5.963(4), c = 20.425(1)Å, β = 123.70(6)º, V = 2120.1(9)Å^3, Z = 2. The overall structure can be described as an array of parallel 2D layers running along [-101] direction, consisting of two types of vanadium oxidation states and coordination polyhedra: face-shared trigonal prisms (V^4+) and distorted corner-shared square pyramids (V^5+). Both configurations form independent parallel chains oriented along the 2-fold symmetry crystallographic b-axis mutually interlinked with terephthalate ligands in a monodentate mode perpendicular to it. The morphology of the compound exhibits long nanofibers, with the growth direction along the layered [-101] axis. The magnetic susceptibility measurements show that the magnetic properties of V_4O_4(OH)_2(O_2CC_6H_4CO_2)_4•DMF can be described by a linear antiferromagnetic chain model, with the isotropic exchange interaction of J = −75 K between the nearest V^4+ neighbours of S = 1/2

    Two-step transition in a magnetoelectric ferrimagnet Cu2OSeO3

    Get PDF
    We report a detailed single crystal investigation of a magnetoelectric ferrimagnet Cu2OSeO3 using dc magnetization and ac susceptibility along the three principal directions [100], [110] and [111]. We have observed that in small magnetic fields two magnetic transitions occur, one at Tc = 57 K and the second one at TN = 58 K. At Tc the non-linear susceptibility reveals the emergence of the ferromagnetic component and below Tc the magnetization measurements show the splitting between field-cooled and zero-field-cooled regimes. Above 1000 Oe the magnetization saturates and the system is in a single domain state. The temperature dependence of the saturation below Tc can be well described by m(T) = m(0)[1 - (T/Tc)^2]^{\beta}, with m(0) = 0.56 (mu)B/Cu, corresponding to the 3-up-1-down configuration. The dielectric constant measured on a thin single crystal shows a systematic deviation below the transition, indicating an intrinsic magnetoelectric effect.Comment: accepted for publication in PR

    Analysing radionuclide content in soil samples and radiological risks in the clayey material surrounding of the “Zbegovi” deposit, Donje Crniljevo, Serbia

    Get PDF
    This paper presents the results of analyses of radionuclide content in the samples of the surrounding soil and clayey material of “Zbegovi” open-pit mine in Donje Crniljevo, Serbia. Samples from 78 sites were collected and prepared. The activity concentrations were determined for radionuclides: 238U, 232Th, 40K, 226Ra, and 137Cs. The mean values obtained are as follows: 23 Bqkg–1, 89 Bqkg–1, 372 Bqkg–1, 56 Bqkg–1, and 11 Bqkg–1, respectively. Concentrations of 238U, 40K, and 226Ra in the studied area do not deviate from the values obtained for the soil in Serbia. The concentration of 232Th in the studied area is slightly higher relative to average values for soil, and slightly lower compared to similar deposits of clayey material in the world. Measurements performed showed that the open-pit mine of clayey material is completely uncontaminated surface as far as 137Cs is concerned, while there are sites where measured 137Cs concentrations are significantly higher, which is due to topographic differences and inhomogeneous surface contamination of land after the Chernobyl accident. To assess the radiological risks in the observed area, the following indices were determined: absorbed dose rate, annual outdoor effective dose, absorbed dose for biota, excess lifetime cancer risk outdoors as well as external radiation hazard index. The mean value of the estimated absorbed dose rate in the given area amounts to 80.1 nGyh–1, and the annual outdoor effective dose ranges from 46.9 to 134 Sv. Absorbed dose rate for biota in the studied area is 1.31 10–4 Gyd–1. The mean excess lifetime cancer risk outdoors for the population is 3.8 10–4, and t he mean value of the external radiation hazard index obtained in this study is 0.48, which is consistent with the world average. A low dose of radiation will not pose a risk to the population and biota in the studied area

    Sub-monolayers of iridium electrodeposited on Ti2AlC substrate as catalysts for hydrogen evolution reaction in sulfuric acid solution

    Get PDF
    The hydrogen evolution reaction (HER) was investigated at sub-monolayers of iridium electrodeposited on Ti2AlC substrate. The lowest amount of electrodeposited iridium was 3 close-packed (111) monolayers (3 ML), while the highest one was 22 ML (3, 5, 10, 15 and 22 ML). The lowest and the highest amounts of iridium were electrodeposited by linear sweep voltammetry (LSV), while the other three samples were electrodeposited by controlled potential coulometry, from the solution containing 1 mM, or 3 mM K3IrCl6 + 0.5 M Na2SO4 (pH 6.2) at 70 °C. The HER was investigated by polarization and electrochemical impedance spectroscopy (EIS) measurements. Polarization curves for iridium sub-monolayers equal, or higher than 6 ML showed low Tafel slope of -14 to -16 mV dec-1 up to about -0.1 A cm-2, while at higher current densities the Tafel slopes increased, varying between -40 and -72 mV dec-1. The highest value of exchange current density (jo) was obtained for 6 ML of electrodeposited iridium, being -27.89 A g-1. The overpotential at j = -0.3 A cm-2 could be determined for samples containing 15 ML and 22 ML of iridium, being 82 mV
    corecore