734 research outputs found
Myopic, Naive, Resolute or Sophisticated? A study of how people take dynamic decisions
Potentially dynamically-inconsistent individuals create particular problems for economics, as their behaviour depends upon whether and how they attempt to resolve
their potential inconsistency. This paper reports on the results of a new experiment designed to help us distinguish between the different types that may exist. We classify
people into four types: myopic, naive, resolute and sophisticated. We implement a new and simple experimental design in which subjects are asked to take two sequential
decisions (interspersed by a random move by Nature) concerning the allocation of a given sum of money. The resulting data enables us to classify the subjects. We find
that the majority are resolute, a significant minority are sophisticated and rather few are naive or myopic.Potentially dynamically-inconsistent individuals create particular problems for economics, as their behaviour depends upon whether and how they attempt to resolve
their potential inconsistency. This paper reports on the results of a new experiment designed to help us distinguish between the different types that may exist. We classify
people into four types: myopic, naive, resolute and sophisticated. We implement a new and simple experimental design in which subjects are asked to take two sequential
decisions (interspersed by a random move by Nature) concerning the allocation of a given sum of money. The resulting data enables us to classify the subjects. We find
that the majority are resolute, a significant minority are sophisticated and rather few are naive or myopic.Non-Refereed Working Papers / of national relevance onl
Interface bonding of a ferromagnetic/semiconductor junction : a photoemission study of Fe/ZnSe(001)
We have probed the interface of a ferromagnetic/semiconductor (FM/SC)
heterojunction by a combined high resolution photoemission spectroscopy and
x-ray photoelectron diffraction study. Fe/ZnSe(001) is considered as an example
of a very low reactivity interface system and it expected to constitute large
Tunnel Magnetoresistance devices. We focus on the interface atomic environment,
on the microscopic processes of the interface formation and on the iron
valence-band. We show that the Fe contact with ZnSe induces a chemical
conversion of the ZnSe outermost atomic layers. The main driving force that
induces this rearrangement is the requirement for a stable Fe-Se bonding at the
interface and a Se monolayer that floats at the Fe growth front. The released
Zn atoms are incorporated in substitution in the Fe lattice position. This
formation process is independent of the ZnSe surface termination (Zn or Se).
The Fe valence-band evolution indicates that the d-states at the Fermi level
show up even at submonolayer Fe coverage but that the Fe bulk character is only
recovered above 10 monolayers. Indeed, the Fe 1-band states,
theoretically predicted to dominate the tunneling conductance of Fe/ZnSe/Fe
junctions, are strongly modified at the FM/SC interface.Comment: 23 pages, 5 figures, submitted to Physical review
Electronic Structure of CeFeAsO1-xFx (x=0, 0.11/x=0.12) compounds
We report an extensive study on the intrinsic bulk electronic structure of
the high-temperature superconductor CeFeAsO0.89F0.11 and its parent compound
CeFeAsO by soft and hard x-ray photoemission, x-ray absorption and soft-x-ray
emission spectroscopies. The complementary surface/bulk probing depth, and the
elemental and chemical sensitivity of these techniques allows resolving the
intrinsic electronic structure of each element and correlating it with the
local structure, which has been probed by extended-x-ray absorption fine
structure spectroscopy. The measurements indicate a predominant 4f1 (i.e. Ce3+)
initial state configuration for Cerium and an effective valence-band-to-4f
charge-transfer screening of the core hole. The spectra also reveal the
presence of a small Ce f0 initial state configuration, which we assign to the
occurrence of an intermediate valence state. The data reveal a reasonably good
agreement with the partial density of states as obtained in standard density
functional calculations over a large energy range. Implications for the
electronic structure of these materials are discussed.Comment: Accepted for publication in Phys. Rev.
Proximity-induced ferromagnetism and chemical reactivity in few-layer VSe2 heterostructures
Among transition-metal dichalcogenides, mono and few-layers thick VSe2 has gained much recent attention following claims of intrinsic room-temperature ferromagnetism in this system, which have nonetheless proved controversial. Here, we address the magnetic and chemical properties of Fe/VSe2 heterostructure by combining element sensitive x-ray absorption spectroscopy and photoemission spectroscopy. Our x-ray magnetic circular dichroism results confirm recent findings that both native mono/few-layer and bulk VSe2 do not show intrinsic ferromagnetic ordering. Nonetheless, we find that ferromagnetism can be induced, even at room temperature, after coupling with a Fe thin film layer, with antiparallel alignment of the moment on the V with respect to Fe. We further consider the chemical reactivity at the Fe/VSe2 interface and its relation with interfacial magnetic coupling
High energy, high resolution photoelectron spectroscopy of Co2Mn(1-x)Fe(x)Si
This work reports on high resolution photoelectron spectroscopy for the
valence band of Co2Mn(1-x)Fe(x)Si (x=0,0.5,1) excited by photons of about 8 keV
energy. The measurements show a good agreement to calculations of the
electronic structure using the LDA+U scheme. It is shown that the high energy
spectra reveal the bulk electronic structure better compared to low energy XPS
spectra. The high resolution measurements of the valence band close to the
Fermi energy indicate the existence of the gap in the minority states for all
three alloys.Comment: 14 pages, 5 figures, submitted to J. Phys. D: Appl. Phy
Electronic structure and spectroscopy of the quaternary Heusler alloy CoCrFeAl
Quaternary Heusler alloys CoCrFeAl with varying Cr to Fe
ratio were investigated experimentally and theoretically. The electronic
structure and spectroscopic properties were calculated using the full
relativistic Korringa-Kohn-Rostocker method with coherent potential
approximation to account for the random distribution of Cr and Fe atoms as well
as random disorder. Magnetic effects are included by the use of spin dependent
potentials in the local spin density approximation.
Magnetic circular dichroism in X-ray absorption was measured at the
edges of Co, Fe, and Cr of the pure compounds and the alloy in order to
determine element specific magnetic moments. Calculations and measurements show
an increase of the magnetic moments with increasing iron content. Resonant
(560eV - 800eV) soft X-ray as well as high resolution - high energy (keV) hard X-ray photo emission was used to probe the density of the
occupied states in CoCrFeAl.Comment: J.Phys.D_Appl.Phys. accepte
Electric control of magnetism at the Fe/BaTiO3 interface
Interfacial magnetoelectric coupling is a viable path to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO3 system, only tiny changes of the interfacial Fe magnetic moment upon reversal of the BaTiO3 dielectric polarization have been predicted so far. Here, by using X-ray magnetic circular dichroism in combination with high-resolution electron microscopy and first principles calculations, we report on an undisclosed physical mechanism for interfacial magnetoelectric coupling in the Fe/BaTiO3 system. At this interface, an ultrathin oxidized iron layer exists, whose magnetization can be electrically and reversibly switched on and off at room temperature by reversing the BaTiO3 polarization. The suppression/recovery of interfacial ferromagnetism results from the asymmetric effect that ionic displacements in BaTiO3 produces on the exchange coupling constants in the interfacial-oxidized Fe layer. The observed giant magnetoelectric response holds potential for optimizing interfacial magnetoelectric coupling in view of efficient, low-power spintronic devices
Role and optimization of the active oxide layer in TiO<sub>2</sub>-based RRAM
TiO2 is commonly used as the active switching layer in resistive random access memory. The electrical characteristics of these devices are directly related to the fundamental conditions inside the TiO2 layer and at the interfaces between it and the surrounding electrodes. However, it is complex to disentangle the effects of film “bulk” properties and interface phenomena. The present work uses hard X-ray photoemission spectroscopy (HAXPES) at different excitation energies to distinguish between these regimes. Changes are found to affect the entire thin film, but the most dramatic effects are confined to an interface. These changes are connected to oxygen ions moving and redistributing within the film. Based on the HAXPES results, post-deposition annealing of the TiO2 thin film was investigated as an optimisation pathway in order to reach an ideal compromise between device resistivity and lifetime. The structural and chemical changes upon annealing are investigated using X-ray absorption spectroscopy and are further supported by a range of bulk and surface sensitive characterisation methods. In summary, it is shown that the management of oxygen content and interface quality is intrinsically important to device behavior and that careful annealing procedures are a powerful device optimisation technique
- …
