130 research outputs found
Construction of yellow fever virus subgenomic replicons by yeast-based homologous recombination cloning technique
RNA replicon derived from Flavivirus genome is a valuable tool for studying viral replication independent of virion assembly and maturation, besides being a great potencial for heterologous gene expression. In this study we described the construction of subgenomic replicons of yellow fever virus by yeast-based homologous recombination technique. The plasmid containing the yellow fever 17D strain replicon (pBSC-repYFV-17D), previously characterized, was handled to heterologous expression of the green fluorescent protein (repYFV-17D-GFP) and firefly luciferase (repYFV-17D-Luc) reporter genes. Both replicons were constructed by homologous recombination between the linearized vector pBSC-repYFV-17D and the PCR product containing homologous 25 nucleotides ends incorporated into PCR primers. The genomic organization of these constructs is similar to repYFV-17D, but with insertion of the reporter gene between the remaining 63 N-terminal nucleotides of the capsid protein and 72 C-terminal nucleotides of the E protein. The replicons repYFV-17D-GFP and repYFV-17D-Luc showed efficient replication and expression of the reporter genes. The yeast-based homologous recombination technique used in this study proved to be applicable for manipulation of the yellow fever virus genome in order to construct subgenomic replicons
Increased cancer risk in patients undergoing dialysis: A population-based cohort study in North-Eastern Italy
Background: In southern Europe, the risk of cancer in patients with end-stage kidney disease receiving dialysis has not been well quantified. The aim of this study was to assess the overall pattern of risk for de novo malignancies (DNMs) among dialysis patients in the Friuli Venezia Giulia region, north-eastern Italy. Methods: A population-based cohort study among 3407 dialysis patients was conducted through a record linkage between local healthcare databases and the cancer registry (1998-2013). Person-years (PYs) were calculated from 30 days after the date of first dialysis to the date of DNM diagnosis, kidney transplant, death, last follow-up or December 31, 2013, whichever came first. The risk of DNM, as compared to the general population, was estimated using standardized incidence ratios (SIRs) and 95% confidence intervals (CIs). Results: During 10,798 PYs, 357 DNMs were diagnosed in 330 dialysis patients. A higher than expected risk of 1.3-fold was found for all DNMs combined (95% CI: 1.15-1.43). The risk was particularly high in younger dialysis patients (SIR = 1.88, 95% CI: 1.42-2.45 for age 40-59 years), and it decreased with age. Moreover, significantly increased DNM risks emerged during the first 3 years since dialysis initiation, especially within the first year (SIR = 8.52, 95% CI: 6.89-10.41). Elevated excess risks were observed for kidney (SIR = 3.18; 95% CI: 2.06-4.69), skin non-melanoma (SIR = 1.81, 95% CI: 1.46-2.22), oral cavity (SIR = 2.42, 95% CI: 1.36-4.00), and Kaposi's sarcoma (SIR = 10.29, 95% CI: 1.25-37.16). Conclusions: The elevated risk for DNM herein documented suggest the need to implement a targeted approach to cancer prevention and control in dialysis patients
Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus.
Polyadenylate sequences of human rhinovirus and poliovirus RNA and cordycepin sensitivity of virus replication
The polyadenylate [poly(A)] content of the genome RNA of human rhinovirus type 14 (HRV-14) is nearly twice as large as that of the genome RNA of poliovirus type 2. The poly(A) content of viral RNA was determined to be the RNase-resistant fraction of 32P-labeled viral RNA extracted from purified virions. Polyacrylamide gel electrophoresis indicated that the poly(A) sequences of HRV-14 are more heterogenous and on an average larger than those of poliovirus RNA. On the basis of susceptibility to micrococcal polynucleotide phosphorylase the rhinovirus genome terminates in poly(A). Replication of both viruses is almost totally inhibited by cordycepin at 50 mug/ml. At lower concentrations, rhinovirus replication is more sensitive to cordycepin than poliovirus replication. Addition of cordycepin (75 mug/ml) to infected culture prior to or during viral RNA replication results in more or less complete inhibition of virus-specific RNA synthesis. The results do not indicate that cordycepin sensitivity of either virus is due to preferential inhibition of viral poly(A) synthesis by this antibiotic.</jats:p
Effect of cordycepin triphosphate on in vitro RNA synthesis by picornavirus polymerase complexes
Cordycepin triphosphate inhibited in vitro [3H]GMP incorporation by pricornavirus-specific polymerase complexes isolated from infected HeLa cells. The inhibition of [3H]GMP incorporation could be reversed with ATP added to the reaction mixture along with the inhibitor, but not with GTP so added or with ATP added 10 min after the inhibitor. Products synthesized in vitro in the presence of cordycepin triphosphate lacked full-length single-stranded viral RNA. These results support RNA chain termination by specific competition with ATP as the mechanism of inhibition of picornavirus-specific RNA synthesis by cordycepin triphosphate.</jats:p
- …
