1,717 research outputs found
Multi-band Superconductivity in the Chevrel Phases SnMo6S8 and PbMo6S8
Sub-Kelvin scanning tunnelling spectroscopy in the Chevrel Phases SnMo6S8 and
PbMo6S8 reveals two distinct superconducting gaps with Delta_1 = 3 meV, Delta_2
~ 1.0 meV and Delta_1 = 3.1 meV, Delta_2 ~ 1.4 meV respectively. The gap
distribution is strongly anisotropic, with Delta_2 predominantly seen when
scanning across unit-cell steps on the (001) sample surface. The spectra are
well-fitted by an anisotropic two-band BCS s-wave gap function. Our
spectroscopic data are confirmed by electronic heat capacity measurements which
also provide evidence for a twin-gap scenario.Comment: 5 pages, 4 figure
Detection of subthreshold pulses in neurons with channel noise
Neurons are subject to various kinds of noise. In addition to synaptic noise,
the stochastic opening and closing of ion channels represents an intrinsic
source of noise that affects the signal processing properties of the neuron. In
this paper, we studied the response of a stochastic Hodgkin-Huxley neuron to
transient input subthreshold pulses. It was found that the average response
time decreases but variance increases as the amplitude of channel noise
increases. In the case of single pulse detection, we show that channel noise
enables one neuron to detect the subthreshold signals and an optimal membrane
area (or channel noise intensity) exists for a single neuron to achieve optimal
performance. However, the detection ability of a single neuron is limited by
large errors. Here, we test a simple neuronal network that can enhance the
pulse detecting abilities of neurons and find dozens of neurons can perfectly
detect subthreshold pulses. The phenomenon of intrinsic stochastic resonance is
also found both at the level of single neurons and at the level of networks. At
the network level, the detection ability of networks can be optimized for the
number of neurons comprising the network.Comment: 14 pages, 9 figure
Detection of Atmospheric Cherenkov Radiation Using Solar Heliostat Mirrors
The gamma-ray energy region between 20 and 250 GeV is largely unexplored.
Ground-based atmospheric Cherenkov detectors offer a possible way to explore
this region, but large Cherenkov photon collection areas are needed to achieve
low energy thresholds. This paper discusses the development of a Cherenkov
detector using the heliostat mirrors of a solar power plant as the primary
collector. As part of this development, we built a prototype detector
consisting of four heliostat mirrors and used it to record atmospheric
Cherenkov radiation produced in extensive air showers created by cosmic ray
particles.Comment: 16 latex pages, 8 postscript figures, uses psfig.sty, to be published
in Astroparticle Physic
Mrk 421, Mrk 501, and 1ES 1426+428 at 100 GeV with the CELESTE Cherenkov Telescope
We have measured the gamma-ray fluxes of the blazars Mrk 421 and Mrk 501 in
the energy range between 50 and 350 GeV (1.2 to 8.3 x 10^25 Hz). The detector,
called CELESTE, used first 40, then 53 heliostats of the former solar facility
"Themis" in the French Pyrenees to collect Cherenkov light generated in
atmospheric particle cascades. The signal from Mrk 421 is often strong. We
compare its flux with previously published multi-wavelength studies and infer
that we are straddling the high energy peak of the spectral energy
distribution. The signal from Mrk 501 in 2000 was weak (3.4 sigma). We obtain
an upper limit on the flux from 1ES 1426+428 of less than half that of the Crab
flux near 100 GeV. The data analysis and understanding of systematic biases
have improved compared to previous work, increasing the detector's sensitivity.Comment: 15 pages, 14 figures, accepted to A&A (July 2006) August 19 --
corrected error in author lis
Standard and Embedded Solitons in Nematic Optical Fibers
A model for a non-Kerr cylindrical nematic fiber is presented. We use the
multiple scales method to show the possibility of constructing different kinds
of wavepackets of transverse magnetic (TM) modes propagating through the fiber.
This procedure allows us to generate different hierarchies of nonlinear partial
differential equations (PDEs) which describe the propagation of optical pulses
along the fiber. We go beyond the usual weakly nonlinear limit of a Kerr medium
and derive an extended Nonlinear Schrodinger equation (eNLS) with a third order
derivative nonlinearity, governing the dynamics for the amplitude of the
wavepacket. In this derivation the dispersion, self-focussing and diffraction
in the nematic are taken into account. Although the resulting nonlinear
may be reduced to the modified Korteweg de Vries equation (mKdV), it also has
additional complex solutions which include two-parameter families of bright and
dark complex solitons. We show analytically that under certain conditions, the
bright solitons are actually double embedded solitons. We explain why these
solitons do not radiate at all, even though their wavenumbers are contained in
the linear spectrum of the system. Finally, we close the paper by making
comments on the advantages as well as the limitations of our approach, and on
further generalizations of the model and method presented.Comment: "Physical Review E, in press
Subthreshold dynamics of the neural membrane potential driven by stochastic synaptic input
In the cerebral cortex, neurons are subject to a continuous bombardment of synaptic inputs originating from the network's background activity. This leads to ongoing, mostly subthreshold membrane dynamics that depends on the statistics of the background activity and of the synapses made on a neuron. Subthreshold membrane polarization is, in turn, a potent modulator of neural responses. The present paper analyzes the subthreshold dynamics of the neural membrane potential driven by synaptic inputs of stationary statistics. Synaptic inputs are considered in linear interaction. The analysis identifies regimes of input statistics which give rise to stationary, fluctuating, oscillatory, and unstable dynamics. In particular, I show that (i) mere noise inputs can drive the membrane potential into sustained, quasiperiodic oscillations (noise-driven oscillations), in the absence of a stimulus-derived, intraneural, or network pacemaker; (ii) adding hyperpolarizing to depolarizing synaptic input can increase neural activity (hyperpolarization-induced activity), in the absence of hyperpolarization-activated currents
The CAT Imaging Telescope for Very-High-Energy Gamma-Ray Astronomy
The CAT (Cherenkov Array at Themis) imaging telescope, equipped with a
very-high-definition camera (546 fast phototubes with 0.12 degrees spacing
surrounded by 54 larger tubes in two guard rings) started operation in Autumn
1996 on the site of the former solar plant Themis (France). Using the
atmospheric Cherenkov technique, it detects and identifies very high energy
gamma-rays in the range 250 GeV to a few tens of TeV. The instrument, which has
detected three sources (Crab nebula, Mrk 421 and Mrk 501), is described in
detail.Comment: 24 pages, 15 figures. submitted to Elsevier Preprin
Recommended from our members
Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study.
Ulcerative colitis is a chronic inflammatory disease of the colon that presents as diarrhea and gastrointestinal bleeding. We performed a genome-wide association study using DNA samples from 1,052 individuals with ulcerative colitis and preexisting data from 2,571 controls, all of European ancestry. In an analysis that controlled for gender and population structure, ulcerative colitis loci attaining genome-wide significance and subsequent replication in two independent populations were identified on chromosomes 1p36 (rs6426833, combined P = 5.1 x 10(-13), combined odds ratio OR = 0.73) and 12q15 (rs1558744, combined P = 2.5 x 10(-12), combined OR = 1.35). In addition, combined genome-wide significant evidence for association was found in a region spanning BTNL2 to HLA-DQB1 on chromosome 6p21 (rs2395185, combined P = 1.0 x 10(-16), combined OR = 0.66) and at the IL23R locus on chromosome 1p31 (rs11209026, combined P = 1.3 x 10(-8), combined OR = 0.56; rs10889677, combined P = 1.3 x 10(-8), combined OR = 1.29)
Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers
Metabolomic profiling and the integration of whole-genome genetic association data has proven to be a powerful tool to comprehensively explore gene regulatory networks and to investigate the effects of genetic variation at the molecular level. Serum metabolite concentrations allow a direct readout of biological processes, and association of specific metabolomic signatures with complex diseases such as Alzheimer's disease and cardiovascular and metabolic disorders has been shown. There are well-known correlations between sex and the incidence, prevalence, age of onset, symptoms, and severity of a disease, as well as the reaction to drugs. However, most of the studies published so far did not consider the role of sexual dimorphism and did not analyse their data stratified by gender. This study investigated sex-specific differences of serum metabolite concentrations and their underlying genetic determination. For discovery and replication we used more than 3,300 independent individuals from KORA F3 and F4 with metabolite measurements of 131 metabolites, including amino acids, phosphatidylcholines, sphingomyelins, acylcarnitines, and C6-sugars. A linear regression approach revealed significant concentration differences between males and females for 102 out of 131 metabolites (p-values<3.8 x 10(-4); Bonferroni-corrected threshold). Sex-specific genome-wide association studies (GWAS) showed genome-wide significant differences in beta-estimates for SNPs in the CPS1 locus (carbamoyl-phosphate synthase 1, significance level: p<3.8 x 10(-10); Bonferroni-corrected threshold) for glycine. We showed that the metabolite profiles of males and females are significantly different and, furthermore, that specific genetic variants in metabolism-related genes depict sexual dimorphism. Our study provides new important insights into sex-specific differences of cell regulatory processes and underscores that studies should consider sex-specific effects in design and interpretation
Very High Energy Gamma-ray spectral properties of Mrk 501 from CAT Cerenkov telescope observations in 1997
The BL Lac object Mrk 501 went into a very high state of activity during
1997, both in VHE gamma-rays and X-rays. We present here results from
observations at energies above 250 GeV carried out between March and October
1997 with the CAT Cerenkov imaging Telescope. The average differential spectrum
between 30 GeV and 13 TeV shows significant curvature and is well represented
by phi_0 * E_TeV^{-(alpha + beta*log10(E_TeV))}, with: phi_0 = 5.19 +/- 0.13
{stat} +/- 0.12 {sys-MC} +1.66/-1.04 {sys-atm} * 10^-11 /cm^2/s/TeV alpha =
2.24 +/- 0.04 {stat} +/- 0.05 {sys} beta = 0.50 +/- 0.07 {stat} (negligible
systematics). The TeV spectral energy distribution of Mrk 501 clearly peaks in
the range 500 GeV-1 TeV. Investigation of spectral variations shows a
significant hardness-intensity correlation with no measurable effect on the
curvature. This can be described as an increase of the peak TeV emission energy
with intensity. Simultaneous and quasi-simultaneous CAT VHE gamma-ray and
BeppoSAX hard X-ray detections for the highest recorded flare on 16th April and
for lower-activity states of the same period show correlated variability with a
higher luminosity in X-rays than in gamma-rays. The observed spectral energy
distribution and the correlated variability between X-rays and gamma-rays, both
in amplitude and in hardening of spectra, favour a two-component emission
scheme where the low and high energy components are attributed to synchrotron
and inverse Compton (IC) radiation, respectively.Comment: Submitted to Astronomy and Astrophysics, 8 pages including 6 figures.
Published with minor change
- …
