12,100 research outputs found
Superspace formulation of general massive gauge theories and geometric interpretation of mass-dependent BRST symmetries
A superspace formulation is proposed for the osp(1,2)-covariant Lagrangian
quantization of general massive gauge theories. The superalgebra os0(1,2) is
considered as subalgebra of sl(1,2); the latter may be considered as the
algebra of generators of the conformal group in a superspace with two
anticommuting coordinates. The mass-dependent (anti)BRST symmetries of proper
solutions of the quantum master equations in the osp(1,2)-covariant formalism
are realized in that superspace as invariance under translations combined with
mass-dependent special conformal transformations. The Sp(2) symmetry - in
particular the ghost number conservation - and the "new ghost number"
conservation are realized as invariance under symplectic rotations and
dilatations, respectively. The transformations of the gauge fields - and of the
full set of necessarily required (anti)ghost and auxiliary fields - under the
superalgebra sl(1,2) are determined both for irreducible and first-stage
reducible theories with closed gauge algebra.Comment: 35 pages, AMSTEX, precision of reference
Nonlocal compensation of pure phase objects with entangled photons
We suggest and demonstrate a scheme for coherent nonlocal compensation of
pure phase objects based on two-photon polarization and momentum entangled
states. The insertion of a single phase object on one of the beams reduces the
purity of the state and the amount of shared entanglement, whereas the original
entanglement can be retrieved by adding a suitable phase object on the other
beam. In our setup polarization and momentum entangled states are generated by
spontaneous parametric downconversion and then purified using a programmable
spatial light modulator, which may be also used to impose arbitrary space
dependent phase functions to the beams. As a possible application, we suggest
and demonstrate a quantum key distribution protocol based on nonlocal phase
compensation.Comment: 7 pages, 5 figure
Marginal states of the resistive tearing mode with flow in cylindrical geometry
The linear stability of tearing modes in a cylindrical plasma subject to a sub-Alfvénic equilibrium shear flow along the equilibrium magnetic field is considered. The equations in the resistive boundary layer at the rational surface are solved numerically using a Fourier transform combined with a finite-element approach. The behaviour of the growth rate as a function of the flow and the various parameters (including a perpendicular fluid viscosity) is obtained. Marginal stability curves showing the dependence of the familiar matching parameter Δ' with flow and shear are also given
A two-step MaxLik-MaxEnt strategy to infer photon distribution from on/off measurement at low quantum efficiency
A method based on Maximum-Entropy (ME) principle to infer photon distribution
from on/off measurements performed with few and low values of quantum
efficiency is addressed. The method consists of two steps: at first some
moments of the photon distribution are retrieved from on/off statistics using
Maximum-Likelihood estimation, then ME principle is applied to infer the
quantum state and, in turn, the photon distribution. Results from simulated
experiments on coherent and number states are presented.Comment: 4 figures, to appear in EPJ
On the use of Hadamard expansions in hyperasymptotic evaluation: differential equations of hypergeometric type
We describe how a modification of a common technique for developing asymptotic expansions of solutions of linear differential equations can be used to derive Hadamard expansions of solutions of differential equations. Hadamard expansions are convergent series that share some of the features of hyperasymptotic expansions, particularly that of having exponentially small remainders when truncated, and, as a consequence, provide a useful computational tool for evaluating special functions. The methods we discuss can be applied to linear differential equations of hypergeometric type and may have wider applicability
Observing the very low-surface brightness dwarfs in a deep field in the VIRGO cluster: constraints on Dark Matter scenarios
We report the discovery of 11 very faint (r< 23), low surface brightness
({\mu}_r< 27 mag/arcsec^2) dwarf galaxies in one deep field in the Virgo
cluster, obtained by the prime focus cameras (LBC) at the Large Binocular
Telescope (LBT). These extend our previous sample to reach a total number of 27
galaxies in a field of just of 0.17 deg^2 located at a median distance of 390
kpc from the cluster center. Their association with the Virgo cluster is
supported by their separate position in the central surface brightness - total
magnitude plane with respect to the background galaxies of similar total
magnitude. For a significant fraction (26\%) of the sample the association to
the cluster is confirmed by spectroscopic follow-up. We show that the mere
abundance of satellite galaxies corresponding to our observed number in the
target field provides extremely tight constraints on Dark Matter models with
suppressed power spectrum compared to the Cold Dark Matter case, independently
of the galaxy luminosity distribution. In particular, requiring the observed
number of satellite galaxies not to exceed the predicted abundance of Dark
Matter sub-halos yields a limit m_X >3 keV at 1-{\sigma} and m_X > 2.3 keV at
2-{\sigma} confidence level for the mass of thermal Warm Dark Matter particles.
Such a limit is competitive with other limits set by the abundance of
ultra-faint satellite galaxies in the Milky Way, is completely independent of
baryon physics involved in galaxy formation, and has the potentiality for
appreciable improvements with next observations. We extend our analysis to Dark
Matter models based on sterile neutrinos, showing that our observations set
tight constraints on the combination of sterile neutrino mass m_{\nu} and
mixing parameter sin^2(2{\theta}). We discuss the robustness of our results
with respect to systematics.Comment: Accepted for publication in Astronomy & Astrophysic
- …
