1,924 research outputs found
The Exoplanet Population Observation Simulator. I - The Inner Edges of Planetary Systems
The Kepler survey provides a statistical census of planetary systems out to
the habitable zone. Because most planets are non-transiting, orbital
architectures are best estimated using simulated observations of ensemble
populations. Here, we introduce EPOS, the Exoplanet Population Observation
Simulator, to estimate the prevalence and orbital architectures of multi-planet
systems based on the latest Kepler data release, DR25. We estimate that at
least 42% of sun-like stars have nearly coplanar planetary systems with 7 or
more exoplanets. The fraction of stars with at least one planet within 1 au
could be as high as 100% depending on assumptions about the distribution of
single transiting planets. We estimate an occurrence rate of planets in the
habitable zone around sun-like stars of eta_earth=36+-14%. The innermost
planets in multi-planet systems are clustered around an orbital period of 10
days (0.1 au), reminiscent of the protoplanetary disk inner edge or could be
explained by a planet trap at that location. Only a small fraction of planetary
systems have the innermost planet at long orbital periods, with fewer than ~8%
and ~3% having no planet interior to the orbit of Mercury and Venus,
respectively. These results reinforce the view that the solar system is not a
typical planetary system, but an outlier among the distribution of known
exoplanetary systems. We predict that at least half of the habitable zone
exoplanets are accompanied by (non-transiting) planets at shorter orbital
periods, hence knowledge of a close-in exoplanet could be used as a way to
optimize the search for Earth-size planets in the Habitable Zone with future
direct imaging missions.Comment: Accepted in AAS journals, code available on githu
Geographic analysis of multiple sensor data from the NASA/USGS earth resources program
Qualitative and quantitative analyses were made of multi-sensor data acquired during aircraft missions. While the principal analysis effort was concentrated on imagery taken over test sites in Southern California, data were also studied from records acquired on missions over test sites at Phoenix, Chicago, Asheville, and New Orleans. The objectives of the analyses were: (1) to determine the capabilities of ten remote sensors in identifying the elements of information necessary in conducting geographic investigations in land use analysis, urban problems, surface energy budget, and soil moisture; (2) to determine the feasibility of using these sensors for these purposes at orbital altitudes; and (3) to collate and analyze ground and air data previously collected and assemble it in a format useful in the accomplishment of cost effectiveness studies
Cross-Sector Partnerships and the Co-creation of Dynamic Capabilities for Stakeholder Orientation
This is the final version of the article. Available from Springer Verlag via the DOI in this record.This paper explores the relationship between business experience in cross-sector partnerships (CSPs) and the co-creation of what we refer to as ‘dynamic capabilities for stakeholder orientation,’ consisting of the four dimensions of (1) sensing, (2) interacting with, (3) learning from and (4) changing based on stakeholders. We argue that the co-creation of dynamic capabilities for stakeholder orientation is crucial for CSPs to create societal impact, as stakeholder-oriented organizations are more suited to deal with “wicked problems,” i.e., problems that are large, messy, and complex (Rittel and Webber, Policy Sciences 4:155–169, 1973; Waddock, Paper presented at the 3rd international symposium on cross sector social interactions, 2012). By means of a grounded theory approach of inductive research, we collected and interpreted data on four global agri-food companies which have heterogeneous experience in participating in CSPs. The results of this paper highlight that only companies’ capability of interacting with stakeholders continually increases, while their capabilities of sensing, learning from, and changing based on stakeholders first increase and then decrease as companies gain more experience in CSP participation. To a large extent, this can be attributed to the development of corporate strategies on sustainability after a few years of CSP participation, which entails a shift from a reactive to a proactive attitude towards sustainability issues and which may decrease the need or motivation for stakeholder orientation. These findings open up important issues for discussion and for future research on the impact of CSPs in a context of wicked problems
Low EUV Luminosities Impinging on Protoplanetary Disks
The amount of high-energy stellar radiation reaching the surface of
protoplanetary disks is essential to determine their chemistry and physical
evolution. Here, we use millimetric and centimetric radio data to constrain the
EUV luminosity impinging on 14 disks around young (~2-10Myr) sun-like stars.
For each object we identify the long-wavelength emission in excess to the dust
thermal emission, attribute that to free-free disk emission, and thereby
compute an upper limit to the EUV reaching the disk. We find upper limits lower
than 10 photons/s for all sources without jets and lower than photons/s for the three older sources in our sample. These latter
values are low for EUV-driven photoevaporation alone to clear out
protoplanetary material in the timescale inferred by observations. In addition,
our EUV upper limits are too low to reproduce the [NeII] 12.81 micron
luminosities from three disks with slow [NeII]-detected winds. This indicates
that the [NeII] line in these sources primarily traces a mostly neutral wind
where Ne is ionized by 1 keV X-ray photons, implying higher photoevaporative
mass loss rates than those predicted by EUV-driven models alone. In summary,
our results suggest that high-energy stellar photons other than EUV may
dominate the dispersal of protoplanetary disks around sun-like stars.Comment: Accepted for publication to The Astrophysical Journa
The Onset of Planet Formation in Brown Dwarf Disks
The onset of planet formation in protoplanetary disks is marked by the growth
and crystallization of sub-micron-sized dust grains accompanied by dust
settling toward the disk mid-plane. Here we present infrared spectra of disks
around brown dwarfs and brown dwarf candidates. We show that all three
processes occur in such cool disks in a way similar or identical to that in
disks around low- and intermediate-mass stars. These results indicate that the
onset of planet formation extends to disks around brown dwarfs, suggesting that
planet formation is a robust process occurring in most young circumstellar
disks.Comment: Published in Science 2005, vol 310, 834; 3 pages in final format, 4
figures + 8 pages Supporting Online Material. For final typeset, see
http://www.sciencemag.org/cgi/content/abstract/310/5749/834?eto
The First Detailed Look at a Brown Dwarf Disk
The combination of mid-infrared and recent submm/mm measurements allows us to
set up the first comprehensive spectral energy distribution (SED) of the
circumstellar material around a young Brown Dwarf. Simple arguments suggest
that the dust is distributed in the form of a disk. We compare basic models to
explore the disk parameters. The modeling shows that a flat disk geometry fits
well the observations. A flared disk explains the SED only if it has a
puffed-up inner rim and an inner gap much larger than the dust sublimation
radius. Similarities and differences with disks around T Tauri stars are
discussed.Comment: 11 pages, 1 figur
Tracing Slow Winds from T Tauri Stars via Low Velocity Forbidden Line Emission
Using Keck/HIRES spectra {\Delta}v ~ 7 km/s, we analyze forbidden lines of [O
I] 6300 {\AA}, [O I] 5577 {\AA} and [S II] 6731 {\AA} from 33 T Tauri stars
covering a range of disk evolutionary stages. After removing a high velocity
component (HVC) associated with microjets, we study the properties of the low
velocity component (LVC). The LVC can be attributed to slow disk winds that
could be magnetically (MHD) or thermally (photoevaporative) driven. Both of
these winds play an important role in the evolution and dispersal of
protoplanetary material.
LVC emission is seen in all 30 stars with detected [O I] but only in 2 out of
eight with detected [S II] , so our analysis is largely based on the properties
of the [O I] LVC. The LVC itself is resolved into broad (BC) and narrow (NC)
kinematic components. Both components are found over a wide range of accretion
rates and their luminosity is correlated with the accretion luminosity, but the
NC is proportionately stronger than the BC in transition disks.
The FWHM of both the BC and NC correlates with disk inclination, consistent
with Keplerian broadening from radii of 0.05 to 0.5 AU and 0.5 to 5 AU,
respectively. The velocity centroids of the BC suggest formation in an MHD disk
wind, with the largest blueshifts found in sources with closer to face-on
orientations. The velocity centroids of the NC however, show no dependence on
disk inclination. The origin of this component is less clear and the evidence
for photoevaporation is not conclusive
Dynamic PRA: an Overview of New Algorithms to Generate, Analyze and Visualize Data
State of the art PRA methods, i.e. Dynamic PRA
(DPRA) methodologies, largely employ system
simulator codes to accurately model system dynamics.
Typically, these system simulator codes (e.g., RELAP5 )
are coupled with other codes (e.g., ADAPT,
RAVEN that monitor and control the simulation. The
latter codes, in particular, introduce both deterministic
(e.g., system control logic, operating procedures) and
stochastic (e.g., component failures, variable uncertainties)
elements into the simulation. A typical DPRA analysis is
performed by:
1. Sampling values of a set of parameters from the
uncertainty space of interest
2. Simulating the system behavior for that specific set of
parameter values
3. Analyzing the set of simulation runs
4. Visualizing the correlations between parameter values
and simulation outcome
Step 1 is typically performed by randomly sampling
from a given distribution (i.e., Monte-Carlo) or selecting
such parameter values as inputs from the user (i.e.,
Dynamic Event Tre
Earths in Other Solar Systems N-body simulations: the Role of Orbital Damping in Reproducing the Kepler Planetary Systems
The population of exoplanetary systems detected by Kepler provides
opportunities to refine our understanding of planet formation. Unraveling the
conditions needed to produce the observed exoplanets will sallow us to make
informed predictions as to where habitable worlds exist within the galaxy. In
this paper, we examine using N-body simulations how the properties of planetary
systems are determined during the final stages of assembly. While accretion is
a chaotic process, trends in the ensemble properties of planetary systems
provide a memory of the initial distribution of solid mass around a star prior
to accretion. We also use EPOS, the Exoplanet Population Observation Simulator,
to account for detection biases and show that different accretion scenarios can
be distinguished from observations of the Kepler systems. We show that the
period of the innermost planet, the ratio of orbital periods of adjacent
planets, and masses of the planets are determined by the total mass and radial
distribution of embryos and planetesimals at the beginning of accretion. In
general, some amount of orbital damping, either via planetesimals or gas,
during accretion is needed to match the whole population of exoplanets.
Surprisingly, all simulated planetary systems have planets that are similar in
size, showing that the "peas in a pod" pattern can be consistent with both a
giant impact scenario and a planet migration scenario. The inclusion of
material at distances larger than what Kepler observes has a profound impact on
the observed planetary architectures, and thus on the formation and delivery of
volatiles to possible habitable worlds.Comment: Resubmitted to ApJ. Planet formation models available online at
http://eos-nexus.org/genesis-database
- …
