2,955 research outputs found
Ageing test of the ATLAS RPCs at X5-GIF
An ageing test of three ATLAS production RPC stations is in course at X5-GIF,
the CERN irradiation facility. The chamber efficiencies are monitored using
cosmic rays triggered by a scintillator hodoscope. Higher statistics
measurements are made when the X5 muon beam is available. We report here the
measurements of the efficiency versus operating voltage at different source
intensities, up to a maximum counting rate of about 700Hz/cm^2. We describe the
performance of the chambers during the test up to an overall ageing of 4 ATLAS
equivalent years corresponding to an integrated charge of 0.12C/cm^2, including
a safety factor of 5.Comment: 4 pages. Presented at the VII Workshop on Resistive Plate Chambers
and Related Detectors; Clermont-Ferrand October 20th-22nd, 200
The Study of TeV Variability and Duty Cycle of Mrk 421 from 3 Years of Observations with the Milagro Observatory
TeV flaring activity with time scales as short as tens of minutes and an
orphan TeV flare have been observed from the blazar Markarian 421 (Mrk 421).
The TeV emission from Mrk 421 is believed to be produced by leptonic
synchrotron self-Compton (SSC) emission. In this scenario, correlations between
the X-ray and the TeV fluxes are expected, TeV orphan flares are hardly
explained and the activity (measured as duty cycle) of the source at TeV
energies is expected to be equal or less than that observed in X-rays if only
SSC is considered. To estimate the TeV duty cycle of Mrk 421 and to establish
limits on its variability at different time scales, we continuously observed
Mrk 421 with the Milagro observatory. Mrk 421 was detected by Milagro with a
statistical significance of 7.1 standard deviations between 2005 September 21
and 2008 March 15. The observed spectrum is consistent with previous
observations by VERITAS. We estimate the duty cycle of Mrk 421 for energies
above 1 TeV for different hypothesis of the baseline flux and for different
flare selections and we compare our results with the X-ray duty cycle estimated
by Resconi et al. 2009. The robustness of the results is discussed.Comment: 27 pages, 6 figures, ApJ accepte
The Sensitivity of HAWC to High-Mass Dark Matter Annihilations
The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view
detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in
central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC
will observe gamma rays and cosmic rays with an array of water Cherenkov
detectors. The full HAWC array is scheduled to be operational in Spring 2015.
In this paper, we study the HAWC sensitivity to the gamma-ray signatures of
high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be
sensitive to diverse searches for dark matter annihilation, including
annihilation from extended dark matter sources, the diffuse gamma-ray emission
from dark matter annihilation, and gamma-ray emission from non-luminous dark
matter subhalos. Here we consider the HAWC sensitivity to a subset of these
sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the
Galactic center. We simulate the HAWC response to gamma rays from these sources
in several well-motivated dark matter annihilation channels. If no gamma-ray
excess is observed, we show the limits HAWC can place on the dark matter
cross-section from these sources. In particular, in the case of dark matter
annihilation into gauge bosons, HAWC will be able to detect a narrow range of
dark matter masses to cross-sections below thermal. HAWC should also be
sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The
constraints placed by HAWC on the dark matter cross-section from known sources
should be competitive with current limits in the mass range where HAWC has
similar sensitivity. HAWC can additionally explore higher dark matter masses
than are currently constrained.Comment: 15 pages, 4 figures, version to be published in PR
Search for an invisibly decaying Higgs boson in e^+e^- collisions at \sqrt{s} = 183 - 189 GeV
A search for a Higgs boson decaying into invisible particles is performed
using the data collected at LEP by the L3 experiment at centre-of-mass energies
of 183 GeV and 189 GeV. The integrated luminosities are respectively 55.3 pb^-1
and 176.4 pb^-1. The observed candidates are consistent with the expectations
from Standard Model processes. In the hypothesis that the production cross
section of this Higgs boson equals the Standard Model one and the branching
ratio into invisible particles is 100%, a lower mass limit of 89.2 GeV is set
at 95% confidence level
Search for Extra Dimensions in Boson and Fermion Pair Production in e+e- Interactions at LEP
Extra spatial dimensions are proposed by recent theories that postulate the
scale of gravity to be of the same order as the electroweak scale. A sizeable
interaction between gravitons and Standard Model particles is then predicted.
Effects of these new interactions in boson and fermion pair production are
searched for in the data sample collected at centre-of-mass energies above the
Z pole by the L3 detector at LEP. In addition, the direct production of a
graviton associated with a Z boson is investigated. No statistically
significant hints for the existence of these effects are found and lower limits
in excess of 1 TeV are derived on the scale of this new theory of gravity
Formation of the in Two-Photon Collisions at LEP
The two-photon width of the meson has been
measured with the L3 detector at LEP. The is studied in the decay
modes , KK, KK,
KK, , , and
using an integrated luminosity of 140 pb at GeV and
of 52 pb at GeV. The result is
(BR) keV. The dependence of the cross section is studied for
GeV. It is found to be better described by a Vector Meson
Dominance model form factor with a J-pole than with a -pole. In addition,
a signal of events is observed at the mass. Upper limits
for the two-photon widths of the , , and are also
given
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
Measurement of the Tau Branching Fractions into Leptons
Using data collected with the L3 detector near the Z resonance, corresponding
to an integrated luminosity of 150pb-1, the branching fractions of the tau
lepton into electron and muon are measured to be
B(tau->e nu nu) = (17.806 +- 0.104 (stat.) +- 0.076 (syst.)) %,
B(tau->mu nu nu) = (17.342 +- 0.110 (stat.) +- 0.067 (syst.)) %.
From these results the ratio of the charged current coupling constants of the
muon and the electron is determined to be g_mu/g_e = 1.0007 +- 0.0051. Assuming
electron-muon universality, the Fermi constant is measured in tau lepton decays
as G_F = (1.1616 +- 0.0058) 10^{-5} GeV^{-2}. Furthermore, the coupling
constant of the strong interaction at the tau mass scale is obtained as
alpha_s(m_tau^2) = 0.322 +- 0.009 (exp.) +- 0.015 (theory)
Search for Manifestations of New Physics in Fermion-Pair Production at LEP
The measurements of hadron and lepton-pair production cross sections and
leptonic forward-backward asymmetries performed with the L3 detector at
centre-of-mass energies between 130 GeV and 189 GeV are used to search for new
physics phenomena such as: contact interactions, exchange of virtual
leptoquarks, scalar quarks and scalar neutrinos, effects of TeV strings in
models of quantum gravity with large extra dimensions and non-zero sizes of the
fermions. No evidence for these phenomena is found and new limits on their
parameters are set
Measurement of Hadron and Lepton-Pair Production at 130GeV < \sqrt{s} < 189 GeV at LEP
We report on measurements of e+e- annihilation into hadrons and lepton pairs.
The data have been collected with the L3 detector at LEP at centre-of-mass
energies between 130 and 189 GeV. Using a total integrated luminosity of 243.7
pb^-1, 25864 hadronic and 8573 lepton-pair events are selected for the
measurement of cross sections and leptonic forward-backward asymmetries. The
results are in good agreement with Standard Model predictions
- …
