310 research outputs found
Recommended from our members
Changes in the distribution of red foxes (Vulpes vulpes) in urban areas in Great Britain: findings and limitations of a media-driven nationwide survey
Urbanization is one of the major forms of habitat alteration occurring at the present time. Although this is typically deleterious to biodiversity, some species flourish within these human-modified landscapes, potentially leading to negative and/or positive interactions between people and wildlife. Hence, up-to-date assessment of urban wildlife populations is important for developing appropriate management strategies. Surveying urban wildlife is limited by land partition and private ownership, rendering many common survey techniques difficult. Garnering public involvement is one solution, but this method is constrained by the inherent biases of non-standardised survey effort associated with voluntary participation. We used a television-led media approach to solicit national participation in an online sightings survey to investigate changes in the distribution of urban foxes in Great Britain and to explore relationships between urban features and fox occurrence and sightings density. Our results show that media-based approaches can generate a large national database on the current distribution of a recognisable species. Fox distribution in England and Wales has changed markedly within the last 25 years, with sightings submitted from 91% of urban areas previously predicted to support few or no foxes. Data were highly skewed with 90% of urban areas having <30 fox sightings per 1000 people km-2. The extent of total urban area was the only variable with a significant impact on both fox occurrence and sightings density in urban areas; longitude and percentage of public green urban space were respectively, significantly positively and negatively associated with sightings density only. Latitude, and distance to nearest neighbouring conurbation had no impact on either occurrence or sightings density. Given the limitations associated with this method, further investigations are needed to determine the association between sightings density and actual fox density, and variability of fox density within and between urban areas in Britain
Recommended from our members
Does urbanization explain differences in interactions between an insect herbivore and its natural enemies and mutualists?
Urbanization can alter the composition of arthropod communities. However, little is known about how urbanization affects ecological interactions. Using experimental colonies of the black bean aphid Aphis fabae Scopoli reared on Vicia faba L, we asked if patterns of predator-prey, host-parasitoid and ant-aphid mutualisms varied along an urbanization gradient across a large town in southern England. We recorded the presence of naturally occurring predators, parasitoid wasps and mutualistic ants together with aphid abundance. We examined how biotic (green areas and plant richness) and abiotic features (impervious surfaces and distance to town center) affected (1) aphid colony size, (2) the likelihood of finding predators, mutualistic ants and aphid mummies (indicating the presence of parasitoids), and (3) how the interplay among these factors affected patterns of parasitoid attack, predator abundance, mutualistic interactions and aphid abundance. The best model to predict aphid abundance was the number of mutualistic ants attending the colonies. Aphid predators responded negatively to both the proportion of impervious surfaces and to the number of mutualistic ants farming the colonies, and positively to aphid population size, whereas parasitized aphids were found in colonies with higher numbers of aphids and ants. The number of mutualistic ants attending was positively associated with aphid colony size and negatively with the number of aphid predators. Our findings suggest that for insect-natural enemy interactions, urbanization may affect some groups, while not influencing others, and that local effects (mutualists, host plant presence) will also be key determinants of how urban ecological communities are formed
Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health?
Like all other plants, trees are vulnerable to attack by a multitude of pests and pathogens. Current control measures for many of these diseases are limited and relatively ineffective. Several methods, including the use of conventional synthetic agro-chemicals, are employed to reduce the impact of pests and diseases. However, because of mounting concerns about adverse effects on the environment and a variety of economic reasons, this limited management of tree diseases by chemical methods is losing ground. The use of biological control, as a more environmentally friendly alternative, is becoming increasingly popular in plant protection. This can include the deployment of soil inoculants and foliar sprays, but the increased knowledge of microbial ecology in the phytosphere, in particular phylloplane microbes and endophytes, has stimulated new thinking for biocontrol approaches. Endophytes are microbes that live within plant tissues. As such, they hold potential as biocontrol agents against plant diseases because they are able to colonize the same ecological niche favoured by many invading pathogens. However, the development and exploitation of endophytes as biocontrol agents will have to overcome numerous challenges. The optimization and improvement of strategies employed in endophyte research can contribute towards discovering effective and competent biocontrol agents. The impact of environment and plant genotype on selecting potentially beneficial and exploitable endophytes for biocontrol is poorly understood. How endophytes synergise or antagonise one another is also an important factor. This review focusses on recent research addressing the biocontrol of plant diseases and pests using endophytic fungi and bacteria, alongside the challenges and limitations encountered and how these can be overcome. We frame this review in the context of tree pests and diseases, since trees are arguably the most difficult plant species to study, work on and manage, yet they represent one of the most important organisms on Earth
Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning
Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world
Recommended from our members
Endophytes vs tree pathogens and pests: can they be used as biological control agents to improve tree health?
Like all other plants, trees are vulnerable to attack by a multitude of pests and pathogens. Current control measures for many of these diseases are limited and relatively ineffective. Several methods, including the use of conventional synthetic agro-chemicals, are employed to reduce the impact of pests and diseases. However, because of mounting concerns about adverse effects on the environment and a variety of economic reasons, this limited management of tree diseases by chemical methods is losing ground. The use of biological control, as a more environmentally friendly alternative, is becoming increasingly popular in plant protection. This can include the deployment of soil inoculants and foliar sprays, but the increased knowledge of microbial ecology in the phytosphere, in particular phylloplane microbes and endophytes, has stimulated new thinking for biocontrol approaches. Endophytes are microbes that live within plant tissues. As such, they hold potential as biocontrol agents against plant diseases because they are able to colonize the same ecological niche favoured by many invading pathogens. However, the development and exploitation of endophytes as biocontrol agents will have to overcome numerous challenges. The optimization and improvement of strategies employed in endophyte research can contribute towards discovering effective and competent biocontrol agents. The impact of environment and plant genotype on selecting potentially beneficial and exploitable endophytes for biocontrol is poorly understood. How endophytes synergise or antagonise one another is also an important factor. This review focusses on recent research addressing the biocontrol of plant diseases and pests using endophytic fungi and bacteria, alongside the challenges and limitations encountered and how these can be overcome. We frame this review in the context of tree pests and diseases, since trees are arguably the most difficult plant species to study, work on and manage, yet they represent one of the most important organisms on Earth
Strategies for Sustainable Urban Development and Urban-Rural Linkages
An important driving force behind urban expansion is the growth of the urban population. But for Europe, this is not a sufficient explanation. The major trend is that European cities have become much less compact. Since the mid-1950s European cities have expanded on average by 78%, whereas the population has grown by only 33%. In the PLUREL project - an integrated project within the EU’s 6th Research Framework Programme - more than 100 researchers from 15 countries analysed the impacts of urban land consumption at a pan-European level and, through six European and one Chinese case studies, identified how land use conflicts and the pressure towards peri-urban areas can be strategically managed in different development and regulatory contexts. To summarise, the following strategies were identified as important steps towards more sustainable urban-rural futures: (i) better coordination of transport, land use and open space planning; (ii) urban containment and densification – development of a green compact city; (iii) preservation of blue and green infrastructure; and (iv) preservation of agricultural land and the promotion of local production. The need also remains to strengthen governance at the regional level while at the pan-European level there is clearly a need for more policy attention to be given to urban-rural linkages
[(18)F]Fluoroethyltyrosine- positron emission tomography-guided radiotherapy for high-grade glioma
BACKGROUND: To compare morphological gross tumor volumes (GTVs), defined as pre- and postoperative gadolinium enhancement on T1-weighted magnetic resonance imaging to biological tumor volumes (BTVs), defined by the uptake of (18)F fluoroethyltyrosine (FET) for the radiotherapy planning of high-grade glioma, using a dedicated positron emission tomography (PET)-CT scanner equipped with three triangulation lasers for patient positioning. METHODS: Nineteen patients with malignant glioma were included into a prospective protocol using FET PET-CT for radiotherapy planning. To be eligible, patients had to present with residual disease after surgery. Planning was performed using the clinical target volume (CTV = GTV union or logical sum BTV) and planning target volume (PTV = CTV + 20 mm). First, the interrater reliability for BTV delineation was assessed among three observers. Second, the BTV and GTV were quantified and compared. Finally, the geometrical relationships between GTV and BTV were assessed. RESULTS: Interrater agreement for BTV delineation was excellent (intraclass correlation coefficient 0.9). Although, BTVs and GTVs were not significantly different (p = 0.9), CTVs (mean 57.8 +/- 30.4 cm(3)) were significantly larger than BTVs (mean 42.1 +/- 24.4 cm(3); p < 0.01) or GTVs (mean 38.7 +/- 25.7 cm(3); p < 0.01). In 13 (68%) and 6 (32%) of 19 patients, FET uptake extended >or= 10 and 20 mm from the margin of the gadolinium enhancement. CONCLUSION: Using FET, the interrater reliability had excellent agreement for BTV delineation. With FET PET-CT planning, the size and geometrical location of GTVs and BTVs differed in a majority of patients
Serial O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma
Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action
Nature-based solutions promoting green and blue urban areas have significant potential to decrease the vulnerability and enhance the resilience of cities in light of climatic change. They can thereby help to mitigate climate change-induced impacts and serve as proactive adaptation options for municipalities. We explore the various contexts in which nature-based solutions are relevant for climate mitigation and adaptation in urban areas, identify indicators for assessing the effectiveness of nature-based solutions and related knowledge gaps. In addition, we explore existing barriers and potential opportunities for increasing the scale and effectiveness of nature-based solution implementation. The results were derived from an inter- and transdisciplinary workshop with experts from research, municipalities, policy, and society. As an outcome of the workshop discussions and building on existing evidence, we highlight three main needs for future science and policy agendas when dealing with nature-based solutions: (i) produce stronger evidence on nature-based solutions for climate change adaptation and mitigation and raise awareness by increasing implementation; (ii) adapt for governance challenges in implementing nature-based solutions by using reflexive approaches, which implies bringing together new networks of society, nature-based solution ambassadors, and practitioners; (iii) consider socio-environmental justice and social cohesion when implementing nature-based solutions by using integrated governance approaches that take into account an integrative and transdisciplinary participation of diverse actors. Taking these needs into account, nature-based solutions can serve as climate mitigation and adaptation tools that produce additional cobenefits for societal well-being, thereby serving as strong investment options for sustainable urban planning
Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme - a dosimetric comparison
<p>Abstract</p> <p>Background</p> <p>Biological brain tumor imaging using O-(2-[<sup>18</sup>F]fluoroethyl)-L-tyrosine (FET)-PET combined with inverse treatment planning for locally restricted dose escalation in patients with glioblastoma multiforme seems to be a promising approach.</p> <p>The aim of this study was to compare inverse with forward treatment planning for an integrated boost dose application in patients suffering from a glioblastoma multiforme, while biological target volumes are based on FET-PET and MRI data sets.</p> <p>Methods</p> <p>In 16 glioblastoma patients an intensity-modulated radiotherapy technique comprising an integrated boost (IB-IMRT) and a 3-dimensional conventional radiotherapy (3D-CRT) technique were generated for dosimetric comparison. FET-PET, MRI and treatment planning CT (P-CT) were co-registrated. The integrated boost volume (PTV1) was auto-contoured using a cut-off tumor-to-brain ratio (TBR) of ≥ 1.6 from FET-PET. PTV2 delineation was MRI-based. The total dose was prescribed to 72 and 60 Gy for PTV1 and PTV2, using daily fractions of 2.4 and 2 Gy.</p> <p>Results</p> <p>After auto-contouring of PTV1 a marked target shape complexity had an impact on the dosimetric outcome. Patients with 3-4 PTV1 subvolumes vs. a single volume revealed a significant decrease in mean dose (67.7 vs. 70.6 Gy). From convex to complex shaped PTV1 mean doses decreased from 71.3 Gy to 67.7 Gy. The homogeneity and conformity for PTV1 and PTV2 was significantly improved with IB-IMRT. With the use of IB-IMRT the minimum dose within PTV1 (61.1 vs. 57.4 Gy) and PTV2 (51.4 vs. 40.9 Gy) increased significantly, and the mean EUD for PTV2 was improved (59.9 vs. 55.3 Gy, p < 0.01). The EUD for PTV1 was only slightly improved (68.3 vs. 67.3 Gy). The EUD for the brain was equal with both planning techniques.</p> <p>Conclusion</p> <p>In the presented planning study the integrated boost concept based on inversely planned IB-IMRT is feasible. The FET-PET-based automatically contoured PTV1 can lead to very complex geometric configurations, limiting the achievable mean dose in the boost volume. With IB-IMRT a better homogeneity and conformity, compared to 3D-CRT, could be achieved.</p
- …
