3,053 research outputs found
Solar electric propulsion system tests
Design and performance of solar-powered electric propulsion system for interplanetary space exploratio
Resolving the high redshift Lyman-alpha forest in smoothed particle hydrodynamics simulations
We use a large set of cosmological smoothed particle hydrodynamics (SPH)
simulations to examine the effect of mass resolution and box size on synthetic
Lya forest spectra at 2 \leq z \leq 5. The mass resolution requirements for the
convergence of the mean Lya flux and flux power spectrum at z=5 are
significantly stricter than at lower redshift. This is because transmission in
the high redshift Lya forest is primarily due to underdense regions in the
intergalactic medium (IGM), and these are less well resolved compared to the
moderately overdense regions which dominate the Lya forest opacity at z~2-3. We
further find that the gas density distribution in our simulations differs
significantly from previous results in the literature at large overdensities
(\Delta>10). We conclude that studies of the Lya forest at z=5 using SPH
simulations require a gas particle mass of M_gas \leq 2x10^5 M_sol/h, which is
>8 times the value required at z=2. A box size of at least 40 Mpc/h is
preferable at all redshifts.Comment: 5 pages, 5 figures, 2 tables, accepted by MNRA
E-Type Delayed Fluorescence of a Phosphine-Supported Cu_2(μ-NAr_2)_2 Diamond Core: Harvesting Singlet and Triplet Excitons in OLEDs
A highly emissive bis(phosphine)diarylamido dinuclear copper(I) complex (quantum yield = 57%) was shown to exhibit E-type delayed fluorescence by variable temperature emission spectroscopy and photoluminescence decay measurement of doped vapor-deposited films. The lowest energy singlet and triplet excited states were assigned as charge transfer states on the basis of theoretical calculations and the small observed S_1−T_1 energy gap. Vapor-deposited OLEDs doped with the complex in the emissive layer gave a maximum external quantum efficiency of 16.1%, demonstrating that triplet excitons can be harvested very efficiently through the delayed fluorescence channel. The function of the emissive dopant in OLEDs was further probed by several physical methods, including electrically detected EPR, cyclic voltammetry, and photoluminescence in the presence of applied current
Biofiltration vs conventional activated sludge plants: what about priority and emerging pollutants removal?
International audience: This paper compares the removal performances of two complete wastewater treatment plants (WWTPs) for all priority substances listed in the Water Framework Directive and additional compounds of interest including flame retardants, surfactants, pesticides, and personal care products (PCPs) (n = 104). First, primary treatments such as physicochemical lamellar settling (PCLS) and primary settling (PS) are compared. Similarly, biofiltration (BF) and conventional activated sludge (CAS) are then examined. Finally, the removal efficiency per unit of nitrogen removed of both WWTPs for micropollutants is discussed, as nitrogenous pollution treatment results in a special design of processes and operational conditions. For primary treatments, hydrophobic pollutants (log K ow > 4) are well removed (>70 %) for both systems despite high variations of removal. PCLS allows an obvious gain of about 20 % regarding pollutant removals, as a result of better suspended solids elimination and possible coagulant impact on soluble compounds. For biological treatments, variations of removal are much weaker, and the majority of pollutants are comparably removed within both systems. Hydrophobic and volatile compounds are well (>60 %) or very well removed (>80 %) by sorption and volatilization. Some readily biodegradable molecules are better removed by CAS, indicating a better biodegradation. A better sorption of pollutants on activated sludge could be also expected considering the differences of characteristics between a biofilm and flocs. Finally, comparison of global processes efficiency using removals of micropollutants load normalized to nitrogen shows that PCLS + BF is as efficient as PS + CAS despite a higher compactness and a shorter hydraulic retention time (HRT). Only some groups of pollutants seem better removed by PS + CAS like alkylphenols, flame retardants, or di-2-ethylhexyl phthalate (DEHP), thanks to better biodegradation and sorption resulting from HRT and biomass characteristics. For both processes, and out of the 68 molecules found in raw water, only half of them are still detected in the water discharged, most of the time close to their detection limit. However, some of them are detected at higher concentrations (>1 μg/L and/or lower than environmental quality standards), which is problematic as they represent a threat for aquatic environment
Beam profile investigation of the new collimator system for the J-PET detector
Jagiellonian Positron Emission Tomograph (J-PET) is a multi-purpose detector
which will be used for search for discrete symmetries violations in the decays
of positronium atoms and for investigations with positronium atoms in
life-sciences and medical diagnostics. In this article we present three methods
for determination of the beam profile of collimated annihilation gamma quanta.
Precise monitoring of this profile is essential for time and energy calibration
of the J-PET detector and for the determination of the library of model signals
used in the hit-time and hit-position reconstruction. We have we have shown
that usage of two lead bricks with dimensions of 5x10x20 cm^3 enables to form a
beam of annihilation quanta with Gaussian profile characterized by 1 mm FWHM.
Determination of this characteristic is essential for designing and
construction the collimator system for the 24-module J-PET prototype.
Simulations of the beam profile for different collimator dimensions were
performed. This allowed us to choose optimal collimation system in terms of the
beam profile parameters, dimensions and weight of the collimator taking into
account the design of the 24 module J-PET detector.Comment: 14 pages, 9 figure
Potential of the J-PET detector for studies of discrete symmetries in decays of positronium atom - a purely leptonic system
The Jagiellonian Positron Emission Tomograph (J-PET) was constructed as a
prototype of the cost-effective scanner for the simultaneous metabolic imaging
of the whole human body. Being optimized for the detection of photons from the
electron-positron annihilation with high time- and high angular-resolution, it
constitutes a multi-purpose detector providing new opportunities for studying
the decays of positronium atoms. Positronium is the lightest purely leptonic
object decaying into photons. As an atom bound by a central potential it is a
parity eigenstate, and as an atom built out of an electron and an anti-electron
it is an eigenstate of the charge conjugation operator. Therefore, the
positronium is a unique laboratory to study discrete symmetries whose precision
is limited in principle by the effects due to the weak interactions expected at
the level of (~10) and photon-photon interactions expected at the level
of (~10). The J-PET detector enables to perform tests of discrete
symmetries in the leptonic sector via the determination of the expectation
values of the discrete-symmetries-odd operators, which may be constructed from
the spin of ortho-positronium atom and the momenta and polarization vectors of
photons originating from its annihilation. In this article we present the
potential of the J-PET detector to test the C, CP, T and CPT symmetries in the
decays of positronium atoms.Comment: 27 pages, 6 figure
Synchronous colorectal liver metastasis: A network meta-analysis review comparing classical, combined, and liver-first surgical strategies.
BACKGROUND: In recent years, the management of synchronous colorectal liver metastasis has changed significantly. Alternative surgical strategies to the classical colorectal-first approach have been proposed. These include the liver-first and combined resections approaches. The objectives of this review were to compare the short- and long-term outcomes for all three approaches.
METHODS: A systematic review of comparative studies was performed. Evaluated endpoints included surgical outcomes (5-year overall survival, 30-day mortality, and post-operative complications). Pair-wise and network meta-analysis (NMA) were performed to compare survival outcomes.
RESULTS: Eighteen studies were included in this review, reporting on 3,605 patients. NMA and pair-wise meta-analysis of the 5-year overall survival did not show significant difference between the three surgical approaches: combined versus colorectal-first, mean odds ratio (OR) 1.02 (95% CI 0.8-1.28, P = 0.93); liver-first versus colorectal-first, mean OR 0.81 (95% CI 0.53-1.26, P = 0.37); liver-first versus combined, mean OR 0.80 (95% CI 0.52-1.24, P = 0.41). In addition NMA of the 30-day mortality among the three approaches also did not observe statistical difference. Analysis of variance showed that mean post-operative complications of all approaches were comparable (P = 0.51).
CONCLUSION: There are considerable differences in the peri-operative management of synchronous CLM patients. This meta-analysis demonstrated no clear statistical surgical outcome or survival advantage towards any of the three approaches. J. Surg. Oncol. © 2014 Wiley Periodicals, Inc
A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators
We present a study of the application of the Jagiellonian Positron Emission
Tomograph (J-PET) for the registration of gamma quanta from decays of
ortho-positronium (o-Ps). The J-PET is the first positron emission tomography
scanner based on organic scintillators in contrast to all current PET scanners
based on inorganic crystals. Monte Carlo simulations show that the J-PET as an
axially symmetric and high acceptance scanner can be used as a multi-purpose
detector well suited to pursue research including e.g. tests of discrete
symmetries in decays of ortho-positronium in addition to the medical imaging.
The gamma quanta originating from o-Ps decay interact in the plastic
scintillators predominantly via the Compton effect, making the direct
measurement of their energy impossible. Nevertheless, it is shown in this paper
that the J-PET scanner will enable studies of the o-Ps decays with
angular and energy resolution equal to and
keV, respectively. An order of magnitude shorter decay
time of signals from plastic scintillators with respect to the inorganic
crystals results not only in better timing properties crucial for the reduction
of physical and instrumental background, but also suppresses significantly the
pileups, thus enabling compensation of the lower efficiency of the plastic
scintillators by performing measurements with higher positron source
activities
Lifetime of d-holes at Cu surfaces: Theory and experiment
We have investigated the hole dynamics at copper surfaces by high-resolution
angle-resolved photoemission experiments and many-body quasiparticle GW
calculations. Large deviations from a free-electron-like picture are observed
both in the magnitude and the energy dependence of the lifetimes, with a clear
indication that holes exhibit longer lifetimes than electrons with the same
excitation energy. Our calculations show that the small overlap of d- and
sp-states below the Fermi level is responsible for the observed enhancement.
Although there is qualitative good agreement of our theoretical predictions and
the measured lifetimes, there still exist some discrepancies pointing to the
need of a better description of the actual band structure of the solid.Comment: 15 pages, 7 figures, 1 table, to appear in Phys. Rev.
Calculation of time resolution of the J-PET tomograph using the Kernel Density Estimation
In this paper we estimate the time resolution of the J-PET scanner built from
plastic scintillators. We incorporate the method of signal processing using the
Tikhonov regularization framework and the Kernel Density Estimation method. We
obtain simple, closed-form analytical formulas for time resolutions. The
proposed method is validated using signals registered by means of the single
detection unit of the J-PET tomograph built out from 30 cm long plastic
scintillator strip. It is shown that the experimental and theoretical results,
obtained for the J-PET scanner equipped with vacuum tube photomultipliers, are
consistent.Comment: 25 pages, 11 figure
- …
