2,854 research outputs found
SAO/NASA joint investigation of astronomical viewing quality at Mount Hopkins Observatory: 1969-1971
Quantitative measurements of the astronomical seeing conditions have been made with a stellar-image monitor system at the Mt. Hopkins Observatory in Arizona. The results of this joint SAO-NASA experiment indicate that for a 15-cm-diameter telescope, image motion is typically 1 arcsec or less and that intensity fluctuations due to scintillation have a coefficient of irradiance variance of less than 0.12 on the average. Correlations between seeing quality and local meteorological conditions were investigated. Local temperature fluctuations and temperature gradients were found to be indicators of image-motion conditions, while high-altitude-wind conditions were shown to be somewhat correlated with scintillation-spectrum bandwidth. The theoretical basis for the relationship of atmospheric turbulence to optical effects is discussed in some detail, along with a description of the equipment used in the experiment. General site-testing comments and applications of the seeing-test results are also included
PROPERTIES OF THE 24 DAY MODULATION IN GX 13+1 FROM NEAR-INFRARED AND X-RAY OBSERVATIONS
A 24 day period for the low-mass X-ray binary (LMXB) GX 13+1 was previously proposed on the basis of seven years of RXTE All-Sky Monitor (ASM) observations and it was suggested that this was the orbital period of the system. This would make it one of the longest known orbital periods for a Galactic LMXB powered by Roche lobe overflow. We present here the results of (1) K-band photometry obtained with the SMARTS Consortium CTIO 1.3 m telescope on 68 nights over a 10 month interval; (2) continued monitoring with the RXTE ASM, analyzed using a semi-weighted power spectrum instead of the data filtering technique previously used; and (3) Swift Burst Alert Telescope (BAT) hard X-ray observations. Modulation near 24 days is seen in both the K band and additional statistically independent ASM X-ray observations. However, the modulation in the ASM is not strictly periodic. The periodicity is also not detected in the Swift BAT observations, but modulation at the same relative level as seen with the ASM cannot be ruled out. If the 24 day period is the orbital period of system, this implies that the X-ray modulation is caused by structure that is not fixed in location. A possible mechanism for the X-ray modulation is the dipping behavior recently reported from XMM-Newton observations
A Study of the 20 Day Superorbital Modulation in the High-Mass X-ray Binary IGR J16493-4348
We report on Nuclear Spectroscopic Telescope Array (NuSTAR), Neil Gehrels
Swift Observatory (Swift) X-ray Telescope (XRT) and Swift Burst Alert Telescope
(BAT) observations of IGR J16493-4348, a wind-fed Supergiant X-ray Binary
(SGXB) showing significant superorbital variability. From a discrete Fourier
transform of the BAT light curve, we refine its superorbital period to be
20.058 0.007 days. The BAT dynamic power spectrum and a fractional root
mean square analysis both show strong variations in the amplitude of the
superorbital modulation, but no observed changes in the period were found. The
superorbital modulation is significantly weaker between MJD 55,700 and MJD
56,300. The joint NuSTAR and XRT observations, which were performed near the
minimum and maximum of one cycle of the 20 day superorbital modulation, show
that the flux increases by more than a factor of two between superorbital
minimum and maximum. We find no significant changes in the 3-50 keV pulse
profiles between superorbital minimum and maximum, which suggests a similar
accretion regime. Modeling the pulse-phase averaged spectra we find a possible
Fe K emission line at 6.4 keV at superorbital maximum. The feature is
not significant at superorbital minimum. While we do not observe any
significant differences between the pulse-phase averaged spectral continua
apart from the overall flux change, we find that the hardness ratio near the
broad main peak of the pulse profile increases from superorbital minimum to
maximum. This suggests the spectral shape hardens with increasing luminosity.
We discuss different mechanisms that might drive the observed superorbital
modulation.Comment: 17 pages, 14 figures, 3 tables, accepted for publication in The
Astrophysical Journal on 2019 May 1
National Geodetic Satellite Program, Part II: Smithsonian Astrophysical Observatory
A sequence of advances in the determination of geodetic parameters presented by the Smithsonian Astrophysical Observatory are described. A Baker-Nunn photographic system was used in addition to a ruby-laser ranging system to obtain data for refinement of geodetic parameters. A summary of the data employed to: (1) derive coordinates for the locations of various tracking stations; and (2) determine the gravitational potential of the earth, is presented
Conservative evaluation of the uncertainty in the LAGEOS-LAGEOS II Lense-Thirring test
We deal with the test of the general relativistic gravitomagnetic
Lense-Thirring effect currently ongoing in the Earth's gravitational field with
the combined nodes \Omega of the laser-ranged geodetic satellites LAGEOS and
LAGEOS II.
One of the most important source of systematic uncertainty on the orbits of
the LAGEOS satellites, with respect to the Lense-Thirring signature, is the
bias due to the even zonal harmonic coefficients J_L of the multipolar
expansion of the Earth's geopotential which account for the departures from
sphericity of the terrestrial gravitational potential induced by the
centrifugal effects of its diurnal rotation. The issue addressed here is: are
the so far published evaluations of such a systematic error reliable and
realistic? The answer is negative. Indeed, if the difference \Delta J_L among
the even zonals estimated in different global solutions (EIGEN-GRACE02S,
EIGEN-CG03C, GGM02S, GGM03S, ITG-Grace02, ITG-Grace03s, JEM01-RL03B, EGM2008,
AIUB-GRACE01S) is assumed for the uncertainties \delta J_L instead of using
their more or less calibrated covariance sigmas \sigma_{J_L}, it turns out that
the systematic error \delta\mu in the Lense-Thirring measurement is about 3 to
4 times larger than in the evaluations so far published based on the use of the
sigmas of one model at a time separately, amounting up to 37% for the pair
EIGEN-GRACE02S/ITG-Grace03s. The comparison among the other recent GRACE-based
models yields bias as large as about 25-30%. The major discrepancies still
occur for J_4, J_6 and J_8, which are just the zonals the combined
LAGEOS/LAGOES II nodes are most sensitive to.Comment: LaTex, 12 pages, 12 tables, no figures, 64 references. To appear in
Central European Journal of Physics (CEJP
Detection of Excercise-Induced Ischemia by Measurement of NT-proBNP
Electrocardiographic exercise testing is the most widely used non-invasive screening test for coronary artery disease (CAD); however, both positive and negative predictive values for this procedure are hampered by relatively low sensitivity and specificity, leading to significant numbers of false negative and false positive studies. We hypothesized that NT-proBNP, a Neuro hormone secreted by cardiac myocytes in the ventricular wall in response to increased wall stress, would rise as a result of exercise-induced ischemia. If this were true, the enhancement of exercise testing by analysis of this plasma biomarker may offer significant improvement in the diagnostic accuracy of this procedure
- …
