204 research outputs found
Conway polynomials of two-bridge links
We give necessary conditions for a polynomial to be the Conway polynomial of
a two-bridge link. As a consequence, we obtain simple proofs of the classical
theorems of Murasugi and Hartley. We give a modulo 2 congruence for links,
which implies the classical modulo 2 Murasugi congruence for knots. We also
give sharp bounds for the coefficients of the Conway and Alexander polynomials
of a two-bridge link. These bounds improve and generalize those of Nakanishi
and Suketa.Comment: 15
Observation and Spectroscopy of a Two-Electron Wigner Molecule in an Ultra-Clean Carbon Nanotube
Coulomb interactions can have a decisive effect on the ground state of
electronic systems. The simplest system in which interactions can play an
interesting role is that of two electrons on a string. In the presence of
strong interactions the two electrons are predicted to form a Wigner molecule,
separating to the ends of the string due to their mutual repulsion. This
spatial structure is believed to be clearly imprinted on the energy spectrum,
yet to date a direct measurement of such a spectrum in a controllable
one-dimensional setting is still missing. Here we use an ultra-clean suspended
carbon nanotube to realize this system in a tunable potential. Using tunneling
spectroscopy we measure the excitation spectra of two interacting carriers,
electrons or holes, and identify seven low-energy states characterized by their
spin and isospin quantum numbers. These states fall into two multiplets
according to their exchange symmetries. The formation of a strongly-interacting
Wigner molecule is evident from the small energy splitting measured between the
two multiplets, that is quenched by an order of magnitude compared to the
non-interacting value. Our ability to tune the two-electron state in space and
to study it for both electrons and holes provides an unambiguous demonstration
of the fundamental Wigner molecule state.Comment: SP and FK contributed equally to this wor
Use of Ricker motions as an alternative to pushover testing
When undertaking centrifuge studies on seismic soil–structure interaction, it is useful to be able to define the pseudo-static ‘pushover’ response of the structure. Normally, this requires separate centrifuge experiments with horizontal actuators. This paper describes an alternative procedure, using Ricker ground motions to obtain the pushover response, thereby allowing both this and the response to seismic shaking to be determined using a centrifuge-mounted shaker. The paper presents an application of this technique to a 1:50 scale model bridge pier with two different shallow foundations, as part of a study on seismic protection using rocking isolation. The moment–rotation (‘backbone’) behaviour of the footings was accurately determined in the centrifuge to large rotations, as verified through independent three-dimensional dynamic non-linear finite-element modelling. Ricker wavelet ground motions are therefore shown to be a useful tool for the identification of pushover response without requiring additional actuators. Furthermore, a simplified analytical methodology is developed, which allows one to predict the maximum foundation rotation induced by a specific Ricker pulse. This methodology may be useful in predicting the characteristics (frequency and acceleration magnitude) of the Ricker pulse required to describe the pushover response of any (practically) rigid oscillator supported on shallow foundations
Static and cyclic rocking on sand:centrifuge versus reduced-scale 1<i>g</i> experiments
Shallow foundations supporting bridge piers, building frames, shear walls and monuments are often subjected to extreme lateral loading such as wind in offshore environments, or strong seismic shaking. Under such loading conditions, foundations may experience a host of non-linear phenomena: sliding on and uplifting from the supporting soil or even soil failure in the form of development of ultimate bearing capacity mechanisms. This type of response is accompanied by residual settlement and rotation of the supported structural system. Nevertheless, inelastic foundation performance can provide potential benefits to the overall seismic integrity of the structure. Thanks to such non-linearities, energy dissipation at or below the foundation level may eventually limit the seismic demand on structural elements. Several theoretical and experimental studies have provided encouraging evidence to this effect. This paper has a dual objective: first, to study the behaviour of shallow foundations under vertical and lateral monotonic loading and under lateral slow cyclic loading of progressively increasing amplitude; second, to explore the differences in foundation response between reduced-scale 1g and centrifuge 50g model testing. Emphasis is placed on interpreting their discrepancies by unveiling the role of scale effects. The role of soil densification due to multiple loading cycles with uplifting is also highlighted.</p
Scale relativity and fractal space-time: theory and applications
In the first part of this contribution, we review the development of the
theory of scale relativity and its geometric framework constructed in terms of
a fractal and nondifferentiable continuous space-time. This theory leads (i) to
a generalization of possible physically relevant fractal laws, written as
partial differential equation acting in the space of scales, and (ii) to a new
geometric foundation of quantum mechanics and gauge field theories and their
possible generalisations. In the second part, we discuss some examples of
application of the theory to various sciences, in particular in cases when the
theoretical predictions have been validated by new or updated observational and
experimental data. This includes predictions in physics and cosmology (value of
the QCD coupling and of the cosmological constant), to astrophysics and
gravitational structure formation (distances of extrasolar planets to their
stars, of Kuiper belt objects, value of solar and solar-like star cycles), to
sciences of life (log-periodic law for species punctuated evolution, human
development and society evolution), to Earth sciences (log-periodic
deceleration of the rate of California earthquakes and of Sichuan earthquake
replicas, critical law for the arctic sea ice extent) and tentative
applications to system biology.Comment: 63 pages, 14 figures. In : First International Conference on the
Evolution and Development of the Universe,8th - 9th October 2008, Paris,
Franc
Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase, an enzyme of the carotenoid biosynthesis pathway.
Glutathione Deficiency in Cardiac Patients Is Related to the Functional Status and Structural Cardiac Abnormalities
International audienceBACKGROUND: The tripeptide glutathione (L-gamma-glutamyl-cysteinyl-glycine) is essential to cell survival, and deficiency in cardiac and systemic glutathione relates to heart failure progression and cardiac remodelling in animal models. Accordingly, we investigated cardiac and blood glutathione levels in patients of different functional classes and with different structural heart diseases. METHODS: Glutathione was measured using standard enzymatic recycling method in venous blood samples obtained from 91 individuals, including 15 healthy volunteers and 76 patients of New York Heart Association (NYHA) functional class I to IV, undergoing cardiac surgery for coronary artery disease, aortic stenosis or terminal cardiomyopathy. Glutathione was also quantified in right atrial appendages obtained at the time of surgery. RESULTS: In atrial tissue, glutathione was severely depleted (-58%) in NYHA class IV patients compared to NYHA class I patients (P = 0.002). In patients with coronary artery disease, this depletion was related to the severity of left ventricular dysfunction (P = 0.006). Compared to healthy controls, blood glutathione was decreased by 21% in NYHA class I patients with structural cardiac disease (P<0.01), and by 40% in symptomatic patients of NYHA class II to IV (P<0.0001). According to the functional NYHA class, significant depletion in blood glutathione occurred before detectable elevation in blood sTNFR1, a marker of symptomatic heart failure severity, as shown by the exponential relationship between these two parameters in the whole cohort of patients (r = 0.88). CONCLUSIONS: This study provides evidence that cardiac and systemic glutathione deficiency is related to the functional status and structural cardiac abnormalities of patients with cardiac diseases. These data also suggest that blood glutathione test may be an interesting new biomarker to detect asymptomatic patients with structural cardiac abnormalities
Naphthenic corrosion resistance, mechanical properties and microstructure evolution of experimental Cr-Mo steels with high Mo content
- …
