1,429 research outputs found
Transition from anticipatory to lag synchronization via complete synchronization in time-delay systems
The existence of anticipatory, complete and lag synchronization in a single
system having two different time-delays, that is feedback delay and
coupling delay , is identified. The transition from anticipatory to
complete synchronization and from complete to lag synchronization as a function
of coupling delay with suitable stability condition is discussed. The
existence of anticipatory and lag synchronization is characterized both by the
minimum of similarity function and the transition from on-off intermittency to
periodic structure in laminar phase distribution.Comment: 14 Pages and 12 Figure
Detectability of non-differentiable generalized synchrony
Generalized synchronization of chaos is a type of cooperative behavior in
directionally-coupled oscillators that is characterized by existence of stable
and persistent functional dependence of response trajectories from the chaotic
trajectory of driving oscillator. In many practical cases this function is
non-differentiable and has a very complex shape. The generalized synchrony in
such cases seems to be undetectable, and only the cases, in which a
differentiable synchronization function exists, are considered to make sense in
practice. We show that this viewpoint is not always correct and the
non-differentiable generalized synchrony can be revealed in many practical
cases. Conditions for detection of generalized synchrony are derived
analytically, and illustrated numerically with a simple example of
non-differentiable generalized synchronization.Comment: 8 pages, 8 figures, submitted to PR
Synchronization of chaotic oscillator time scales
This paper deals with the chaotic oscillator synchronization. A new approach
to detect the synchronized behaviour of chaotic oscillators has been proposed.
This approach is based on the analysis of different time scales in the time
series generated by the coupled chaotic oscillators. It has been shown that
complete synchronization, phase synchronization, lag synchronization and
generalized synchronization are the particular cases of the synchronized
behavior called as "time--scale synchronization". The quantitative measure of
chaotic oscillator synchronous behavior has been proposed. This approach has
been applied for the coupled Rossler systems.Comment: 29 pages, 11 figures, published in JETP. 100, 4 (2005) 784-79
Quantum response of weakly chaotic systems
Chaotic systems, that have a small Lyapunov exponent, do not obey the common
random matrix theory predictions within a wide "weak quantum chaos" regime.
This leads to a novel prediction for the rate of heating for cold atoms in
optical billiards with vibrating walls. The Hamiltonian matrix of the driven
system does not look like one from a Gaussian ensemble, but rather it is very
sparse. This sparsity can be characterized by parameters and that
reflect the percentage of large elements, and their connectivity respectively.
For we use a resistor network calculation that has direct relation to the
semi-linear response characteristics of the system.Comment: 7 pages, 5 figures, expanded improved versio
Coupled Maps on Trees
We study coupled maps on a Cayley tree, with local (nearest-neighbor)
interactions, and with a variety of boundary conditions. The homogeneous state
(where every lattice site has the same value) and the node-synchronized state
(where sites of a given generation have the same value) are both shown to occur
for particular values of the parameters and coupling constants. We study the
stability of these states and their domains of attraction. As the number of
sites that become synchronized is much higher compared to that on a regular
lattice, control is easier to effect. A general procedure is given to deduce
the eigenvalue spectrum for these states. Perturbations of the synchronized
state lead to different spatio-temporal structures. We find that a mean-field
like treatment is valid on this (effectively infinite dimensional) lattice.Comment: latex file (25 pages), 4 figures included. To be published in Phys.
Rev.
Parameter Mismatches and Perfect Anticipating Synchronization in bi-directionally coupled external cavity laser diodes
We study perfect chaos synchronization between two bi-directionally coupled
external cavity semiconductor lasers and demonstrate for the first time that
mismatches in laser photon decay rates can explain the experimentally observed
anticipating time in synchronization.Comment: Latex 4 page
Synchronization of Coupled Systems with Spatiotemporal Chaos
We argue that the synchronization transition of stochastically coupled
cellular automata, discovered recently by L.G. Morelli {\it et al.} (Phys. Rev.
{\bf 58 E}, R8 (1998)), is generically in the directed percolation universality
class. In particular, this holds numerically for the specific example studied
by these authors, in contrast to their claim. For real-valued systems with
spatiotemporal chaos such as coupled map lattices, we claim that the
synchronization transition is generically in the universality class of the
Kardar-Parisi-Zhang equation with a nonlinear growth limiting term.Comment: 4 pages, including 3 figures; submitted to Phys. Rev.
- …
