1,429 research outputs found

    Transition from anticipatory to lag synchronization via complete synchronization in time-delay systems

    Get PDF
    The existence of anticipatory, complete and lag synchronization in a single system having two different time-delays, that is feedback delay τ1\tau_1 and coupling delay τ2\tau_2, is identified. The transition from anticipatory to complete synchronization and from complete to lag synchronization as a function of coupling delay τ2\tau_2 with suitable stability condition is discussed. The existence of anticipatory and lag synchronization is characterized both by the minimum of similarity function and the transition from on-off intermittency to periodic structure in laminar phase distribution.Comment: 14 Pages and 12 Figure

    Detectability of non-differentiable generalized synchrony

    Full text link
    Generalized synchronization of chaos is a type of cooperative behavior in directionally-coupled oscillators that is characterized by existence of stable and persistent functional dependence of response trajectories from the chaotic trajectory of driving oscillator. In many practical cases this function is non-differentiable and has a very complex shape. The generalized synchrony in such cases seems to be undetectable, and only the cases, in which a differentiable synchronization function exists, are considered to make sense in practice. We show that this viewpoint is not always correct and the non-differentiable generalized synchrony can be revealed in many practical cases. Conditions for detection of generalized synchrony are derived analytically, and illustrated numerically with a simple example of non-differentiable generalized synchronization.Comment: 8 pages, 8 figures, submitted to PR

    Synchronization of chaotic oscillator time scales

    Full text link
    This paper deals with the chaotic oscillator synchronization. A new approach to detect the synchronized behaviour of chaotic oscillators has been proposed. This approach is based on the analysis of different time scales in the time series generated by the coupled chaotic oscillators. It has been shown that complete synchronization, phase synchronization, lag synchronization and generalized synchronization are the particular cases of the synchronized behavior called as "time--scale synchronization". The quantitative measure of chaotic oscillator synchronous behavior has been proposed. This approach has been applied for the coupled Rossler systems.Comment: 29 pages, 11 figures, published in JETP. 100, 4 (2005) 784-79

    Quantum response of weakly chaotic systems

    Full text link
    Chaotic systems, that have a small Lyapunov exponent, do not obey the common random matrix theory predictions within a wide "weak quantum chaos" regime. This leads to a novel prediction for the rate of heating for cold atoms in optical billiards with vibrating walls. The Hamiltonian matrix of the driven system does not look like one from a Gaussian ensemble, but rather it is very sparse. This sparsity can be characterized by parameters ss and gg that reflect the percentage of large elements, and their connectivity respectively. For gg we use a resistor network calculation that has direct relation to the semi-linear response characteristics of the system.Comment: 7 pages, 5 figures, expanded improved versio

    Coupled Maps on Trees

    Get PDF
    We study coupled maps on a Cayley tree, with local (nearest-neighbor) interactions, and with a variety of boundary conditions. The homogeneous state (where every lattice site has the same value) and the node-synchronized state (where sites of a given generation have the same value) are both shown to occur for particular values of the parameters and coupling constants. We study the stability of these states and their domains of attraction. As the number of sites that become synchronized is much higher compared to that on a regular lattice, control is easier to effect. A general procedure is given to deduce the eigenvalue spectrum for these states. Perturbations of the synchronized state lead to different spatio-temporal structures. We find that a mean-field like treatment is valid on this (effectively infinite dimensional) lattice.Comment: latex file (25 pages), 4 figures included. To be published in Phys. Rev.

    Parameter Mismatches and Perfect Anticipating Synchronization in bi-directionally coupled external cavity laser diodes

    Full text link
    We study perfect chaos synchronization between two bi-directionally coupled external cavity semiconductor lasers and demonstrate for the first time that mismatches in laser photon decay rates can explain the experimentally observed anticipating time in synchronization.Comment: Latex 4 page

    Synchronization of Coupled Systems with Spatiotemporal Chaos

    Full text link
    We argue that the synchronization transition of stochastically coupled cellular automata, discovered recently by L.G. Morelli {\it et al.} (Phys. Rev. {\bf 58 E}, R8 (1998)), is generically in the directed percolation universality class. In particular, this holds numerically for the specific example studied by these authors, in contrast to their claim. For real-valued systems with spatiotemporal chaos such as coupled map lattices, we claim that the synchronization transition is generically in the universality class of the Kardar-Parisi-Zhang equation with a nonlinear growth limiting term.Comment: 4 pages, including 3 figures; submitted to Phys. Rev.
    corecore