10,488 research outputs found

    Temporary cooling of quasiparticles and delay in voltage response of superconducting bridges after abrupt switching on the supercritical current

    Full text link
    We revisit the problem of the dynamic response of a superconducting bridge after abruptly switching on the supercritical current I>IcI>I_c. In contrast to previous theoretical works we take into account spatial gradients and use both the local temperature approach and the kinetic equation for the distribution function of quasiparticles. In both models the finite delay time tdt_d in the voltage response is connected with temporary cooling of quasiparticles due to the suppression of the superconducitng order parameter by current. We find that tdt_d has different values and different temperature dependencies in the considered models. In turns out that the presence of even small inhomogeneities in the bridge or of bulk leads/contacts at the ends of the {\it homogenous} bridge favors a local suppression of the superconducting order parameter Δ|\Delta| during the dynamic response. It results in a decrease of the delay time, in comparison with the spatially uniform model, due to the diffusion of nonequilibrium quasiparticles from the region with locally suppressed Δ|\Delta|. In case the current distribution is spatially nonuniform across the bridge the delay time is mainly connected with the time needed for the nucleation of the first vortex at the position where the current density is maximal (at IIcI\sim I_c and for not very wide films). We also find that a short alternating current pulse (sinusoid like) with zero time-average may result in a nonzero time-averaged voltage response where its sign depends on the phase of the ac current.Comment: 13 pages, 11 figure

    Mixing the stimulus list in bilingual lexical decision turns cognate facilitation effects into mirrored inhibition effects

    No full text
    To test the BIA+ and Multilink models’ accounts of how bilinguals process words with different degrees of cross-linguistic orthographic and semantic overlap, we conducted two experiments manipulating stimulus list composition. Dutch-English late bilinguals performed two English lexical decision tasks including the same set of cognates, interlingual homographs, English control words, and pseudowords. In one task, half of the pseudowords were replaced with Dutch words, requiring a ‘no’ response. This change from pure to mixed language list context was found to turn cognate facilitation effects into inhibition. Relative to control words, larger effects were found for cognate pairs with an increasing cross-linguistic form overlap. Identical cognates produced considerably larger effects than non-identical cognates, supporting their special status in the bilingual lexicon. Response patterns for different item types are accounted for in terms of the items’ lexical representation and their binding to ‘yes’ and ‘no’ responses in pure vs mixed lexical decision

    Double quantum dots defined in bilayer graphene

    Full text link
    Artificial molecular states of double quantum dots defined in bilayer graphene are studied with the atomistic tight-binding and its low-energy continuum approximation. We indicate that the extended electron wave functions have opposite parities on each of the sublattices at both graphene layers and that the ground-state wave function components change from bonding to antibonding with the interdot distance. In the weak coupling limit -- the most relevant for the quantum dots defined electrostatically -- the signatures of the interdot coupling include -- for the two-electron ground state -- formation of states with symmetric or antisymmetric spatial wave functions split by the exchange energy. In the high energy part of the spectrum the states with both electrons in the same dot are found with the splitting of energy levels corresponding to simultaneous tunneling of the electron pair from one dot to the other

    Carbon clusters: From ring structures to nanographene

    Full text link
    The lowest energy configurations of Cn(n =< 55) clusters are obtained using the energy mini- mization technique with the conjugate gradient (CG) method where a modified Brenner potential is invoked to describe the carbon and hydrocarbon interaction. We found that the ground state configuration consists of a single ring for small number of C atoms and multi-ring structures are found with increasing n, which can be in planar, bowl-like or cap-like form. Contrary to previous predictions, the binding energy Eb does not show even-odd oscillations and only small jumps are found in the Eb(n) curve as a consequence of specific types of edges or equivalently the number of secondary atoms. We found that hydrogenation of the edge atoms may change the ground state configuration of the nanocluster. In both cases we determined the magic clusters. Special attention is paid to trigonal and hexagonal shaped carbon clusters and to clusters having a graphene-like configuration. Trigonal clusters are never the ground state, while hexagonal shaped clusters are only the ground state when they have zigzag edges.Comment: Accepted for publication in Phys. Rev.

    Wigner crystallization in transition metal dichalcogenides: A new approach to correlation energy

    Full text link
    We introduce a new approach for the correlation energy of one- and two-valley two-dimensional electron gas (2DEG) systems. Our approach is based on a random phase approximation at high densities and a classical approach at low densities, with interpolation between the two limits. This approach gives excellent agreement with available Quantum Monte Carlo (QMC) calculations. We employ the two-valley 2DEG model to describe the electron correlations in monolayer transition metal dichalcogenides (TMDs). The zero-temperature transition from a Fermi liquid to a quantum Wigner crystal phase in monolayer TMDs is obtained using density-functional theory within the local-density approximation. Consistent with QMC, we find that electrons crystallize at rs=30.5r_s=30.5 in one-valley 2DEG. For two-valleys, we predict Wigner crystallization at rs=29.5r_s= 29.5, indicating that valley degeneracy has little effect on the critical rsr_s, in contrast to an earlier claim.Comment: 5 pages, 3 figure

    Combining Column Generation and Lagrangian Relaxation

    Get PDF
    Although the possibility to combine column generation and Lagrangian relaxation has been known for quite some time, it has only recently been exploited in algorithms. In this paper, we discuss ways of combining these techniques. We focus on solving the LP relaxation of the Dantzig-Wolfe master problem. In a first approach we apply Lagrangian relaxation directly to this extended formulation, i.e. no simplex method is used. In a second one, we use Lagrangian relaxation to generate new columns, that is Lagrangian relaxation is applied to the compact for-mulation. We will illustrate the ideas behind these algorithms with an application in Lot-sizing. To show the wide applicability of these techniques, we also discuss applications in integrated vehicle and crew scheduling, plant location and cutting stock problems.column generation;Lagrangean relaxation;cutting stock problem;lotsizing;vehicle and crew scheduling

    Field effect on surface states in a doped Mott-Insulator thin film

    Full text link
    Surface effects of a doped thin film made of a strongly correlated material are investigated both in the absence and presence of a perpendicular electric field. We use an inhomogeneous Gutzwiller approximation for a single band Hubbard model in order to describe correlation effects. For low doping, the bulk value of the quasiparticle weight is recovered exponentially deep into the slab, but with increasing doping, additional Friedel oscillations appear near the surface. We show that the inverse correlation length has a power-law dependence on the doping level. In the presence of an electrical field, considerable changes in the quasiparticle weight can be realized throughout the system. We observe a large difference (as large as five orders of magnitude) in the quasiparticle weight near the opposite sides of the slab. This effect can be significant in switching devices that use the surface states for transport
    corecore