509 research outputs found

    On Measuring the Relative Importance of Explanatory Variables in a Logistic Regression

    Get PDF
    A search is described for valid methods of assessing the importance of explanatory variables in logistic regression, motivated by earlier work on the relationship between corporate governance variables and the issuance of restricted voting shares (RSF). The methods explored are adaptations of Pratt’s (1987) approach for measuring variable importance in simple linear regression, which is based on a special partition of R2. Pseudo-R2 measures for logistic regression are briefly reviewed, and two measures are selected which can be partitioned in a manner analogous to that used by Pratt. One of these is ultimately selected for the variable importance analysis of the RSF data based on its small sample stability. Confidence intervals for variable importance are obtained using the bootstrap method, and used to draw conclusions regarding the relative importance of the corporate governance variables

    In-plane spin excitation anisotropy in the paramagnetic phase of NaFeAs

    Full text link
    We use unpolarized and polarized inelastic neutron scattering to study low-energy spin excitations in NaFeAs, which exhibits a tetragonal-to-orthorhombic lattice distortion at Ts58T_s\approx 58 K followed by a collinear antiferromagnetic (AF) order below TN45T_N\approx 45 K. In the AF ordered state (T<TNT<T_N), spin waves are entirely c-axis polarized below \sim10 meV, exhibiting a gap of 4\sim4 meV at the AF zone center and disperse to \sim7 meV near the c-axis AF zone boundary. On warming to the paramagnetic state with orthorhombic lattice distortion (TN<T<TsT_N<T<T_s), spin excitations become anisotropic within the FeAs plane. Upon further warming to the paramagnetic tetragonal state (T>TsT>T_s), spin excitations become more isotropic. Since similar magnetic anisotropy is also observed in the paramagnetic tetragonal phase of superconducting BaFe1.904_{1.904}Ni0.096_{0.096}As2_2, our results suggest that the spin excitation anisotropy in superconducting iron pnictides originates from similar anisotropy already present in their parent compounds.Comment: 7 pages, 4 figure

    Temperature dependence of the resonance and low energy spin excitations in superconducting FeTe0.6_{0.6}Se0.4_{0.4}

    Full text link
    We use inelastic neutron scattering to study the temperature dependence of the low-energy spin excitations in single crystals of superconducting FeTe0.6_{0.6}Se0.4_{0.4} (Tc=14T_c=14 K). In the low-temperature superconducting state, the imaginary part of the dynamic susceptibility at the electron and hole Fermi surfaces nesting wave vector Q=(0.5,0.5)Q=(0.5,0.5), χ(Q,ω)\chi^{\prime\prime}(Q,\omega), has a small spin gap, a two-dimensional neutron spin resonance above the spin gap, and increases linearly with increasing ω\hbar\omega for energies above the resonance. While the intensity of the resonance decreases like an order parameter with increasing temperature and disappears at temperature slightly above TcT_c, the energy of the mode is weakly temperature dependent and vanishes concurrently above TcT_c. This suggests that in spite of its similarities with the resonance in electron-doped superconducting BaFe2x_{2-x}(Co,Ni)x_xAs2_2, the mode in FeTe0.6_{0.6}Se0.4_{0.4} is not directly associated with the superconducting electronic gap.Comment: 7 pages, 6 figure

    Electron doping evolution of the magnetic excitations in BaFe2-xNixAs2

    Full text link
    We use inelastic neutron scattering (INS) spectroscopy to study the magnetic excitations spectra throughout the Brioullion zone in electron-doped iron pnictide superconductors BaFe2x_{2-x}Nix_{x}As2_{2} with x=0.096,0.15,0.18x=0.096,0.15,0.18. While the x=0.096x=0.096 sample is near optimal superconductivity with Tc=20T_c=20 K and has coexisting static incommensurate magnetic order, the x=0.15,0.18x=0.15,0.18 samples are electron-overdoped with reduced TcT_c of 14 K and 8 K, respectively, and have no static antiferromagnetic (AF) order. In previous INS work on undoped (x=0x=0) and electron optimally doped (x=0.1x=0.1) samples, the effect of electron-doping was found to modify spin waves in the parent compound BaFe2_2As2_2 below \sim100 meV and induce a neutron spin resonance at the commensurate AF ordering wave vector that couples with superconductivity. While the new data collected on the x=0.096x=0.096 sample confirms the overall features of the earlier work, our careful temperature dependent study of the resonance reveals that the resonance suddenly changes its QQ-width below TcT_c similar to that of the optimally hole-doped iron pnictides Ba0.67_{0.67}K0.33_{0.33}Fe2_2As2_2. In addition, we establish the dispersion of the resonance and find it to change from commensurate to transversely incommensurate with increasing energy. Upon further electron-doping to overdoped iron pnictides with x=0.15x=0.15 and 0.18, the resonance becomes weaker and transversely incommensurate at all energies, while spin excitations above \sim100 meV are still not much affected. Our absolute spin excitation intensity measurements throughout the Brillouin zone for x=0.096,0.15,0.18x=0.096,0.15,0.18 confirm the notion that the low-energy spin excitation coupling with itinerant electron is important for superconductivity in these materials, even though the high-energy spin excitations are weakly doping dependent.Comment: 16 pages, 16 figure

    Impact of the first order antiferromagnetic phase transition on the paramagnetic spin excitations and nematic phase of SrFe2_2As2_2

    Full text link
    Understanding the nature of the electronic nematic phase in iron pnictide superconductors is important for elucidating its impact on high-temperature superconductivity. Here we use transport and inelastic neutron scattering to study spin excitations and in-plane resistivity anisotropy in uniaxial pressure detwinned BaFe2_2As2_2 and SrFe2_2As2_2, the parent compounds of iron pnictide superconductors. While BaFe2_2As2_2 exhibits weakly first order tetragonal-to-orthorhombic structural and antiferromagnetic (AF) phase transitions below Ts>TN138T_s > T_N\approx 138 K, SrFe2_2As2_2 has strongly coupled first order structural and AF transitions below Ts=TN210T_s= T_N\approx 210 K. We find that the direct signatures of the nematic phase persist to lower temperatures above the phase transition in the case of SrFe2_2As2_2 compared to BaFe2_2As2_2. Our findings support the conclusion that the strongly first-order nature of the magnetic transition in SrFe2_2As2_2 weakens the nematic phase and resistivity anisotropy in the system.Comment: 9 pages, 8 figure

    Anisotropic but nodeless superconducting gap in the presence of spin density wave in iron-pnictide superconductor NaFe1-xCoxAs

    Full text link
    The coexisting regime of spin density wave (SDW) and superconductivity in the iron pnictides represents a novel ground state. We have performed high resolution angle-resolved photoemission measurements on NaFe1-xCoxAs (x = 0.0175) in this regime and revealed its distinctive electronic structure, which provides some microscopic understandings of its behavior. The SDW signature and the superconducting gap are observed on the same bands, illustrating the intrinsic nature of the coexistence. However, because the SDW and superconductivity are manifested in different parts of the band structure, their competition is non-exclusive. Particularly, we found that the gap distribution is anisotropic and nodeless, in contrast to the isotropic superconducting gap observed in an SDW-free NaFe1-xCoxAs (x=0.045), which puts strong constraints on theory.Comment: 5 pages, 4 figures + supplementary informatio

    Experimental elucidation of the origin of the `double spin resonances' in Ba(Fe1x_{1-x}Cox_x)2_2As2_2

    Full text link
    We report a combined study of the spin resonances and superconducting gaps for underdoped (Tc=19T_c=19 K), optimally doped (Tc=25T_c=25 K), and overdoped (Tc=19T_c=19 K) Ba(Fe1x_{1-x}Cox_x)2_2As2_2 single crystals with inelastic neutron scattering and angle resolved photoemission spectroscopy. We find a quasi two dimensional spin resonance whose energy scales with the superconducting gap in all three compounds. In addition, anisotropic low energy spin excitation enhancements in the superconducting state have been deduced and characterized for the under and optimally doped compounds. Our data suggest that the quasi two dimensional spin resonance is a spin exciton that corresponds to the spin singlet-triplet excitations of the itinerant electrons. However, the intensity enhancements of the anisotropic spin excitations are dominated by the out-of-plane spin excitations of the ordered moments due to the suppression of damping in the superconducting state. Hence we offer a new interpretation of the double energy scales differing from previous interpretations based on anisotropic superconducting energy gaps, and systematically explain the doping-dependent trend across the phase diagram.Comment: 8 pages, 7 figures, 1 table. Accepted for publication on Physical Review
    corecore