5,915 research outputs found
Flutter prediction for a wing with active aileron control
A method for predicting the vibrational stability of an aircraft with an analog active aileron flutter suppression system (FSS) is expained. Active aileron refers to the use of an active control system connected to the aileron to damp vibrations. Wing vibrations are sensed by accelerometers and the information is used to deflect the aileron. Aerodynamic force caused by the aileron deflection oppose wing vibrations and effectively add additional damping to the system
Quantum Logic with a Single Trapped Electron
We propose the use of a trapped electron to implement quantum logic
operations. The fundamental controlled-NOT gate is shown to be feasible. The
two quantum bits are stored in the internal and external (motional) degrees of
freedom.Comment: 7 Pages, REVTeX, No Figures, To appear in Phys. Rev.
Self-stabilised fractality of sea-coasts through damped erosion
Erosion of rocky coasts spontaneously creates irregular seashores. But the
geometrical irregularity, in turn, damps the sea-waves, decreasing the average
wave amplitude. There may then exist a mutual self-stabilisation of the waves
amplitude together with the irregular morphology of the coast. A simple model
of such stabilisation is studied. It leads, through a complex dynamics of the
earth-sea interface, to the appearance of a stationary fractal seacoast with
dimension close to 4/3. Fractal geometry plays here the role of a morphological
attractor directly related to percolation geometry.Comment: 4 pages, 5 figure
Electron-radiation interaction in a Penning trap: beyond the dipole approximation
We investigate the physics of a single trapped electron interacting with a
radiation field without the dipole approximation. This gives new physical
insights in the so-called geonium theory.Comment: 12 pages, RevTeX, 6 figures, Approved for publication in Phys. Rev.
Climate change adaptation, flood risks and policy coherence in integrated water resources management in England
Integrated water resources management (IWRM) assumes coherence between cognate aspects of water governance at the river basin scale, for example water quality, energy production and agriculture objectives. But critics argue that IWRM is often less ‘integrated’ in practice, raising concerns over inter-sectoral coherence between implementing institutions. One increasingly significant aspect of IWRM is adaptation to climate change-related risks, including threats from flooding, which are particularly salient in England. Although multiple institutional mechanisms exist for flood risk management (FRM), their coherence remains a critical question for national adaptation. This paper therefore (1) maps the multi-level institutional frameworks determining both IWRM and FRM in England; (2) examines their interaction via various inter-institutional coordinating mechanisms; and (3) assesses the degree of coherence. The analysis suggests that cognate EU strategic objectives for flood risk assessment demonstrate relatively high vertical and horizontal coherence with river basin planning. However, there is less coherence with flood risk requirements for land-use planning and national flood protection objectives. Overall, this complex governance arrangement actually demonstrates de-coherence over time due to ongoing institutional fragmentation. Recommendations for increasing IWRM coherence in England or re-coherence based on greater spatial planning and coordination of water-use and land-use strategies are proposed
- …
