1,151 research outputs found

    A planetary nervous system for social mining and collective awareness

    Get PDF
    We present a research roadmap of a Planetary Nervous System (PNS), capable of sensing and mining the digital breadcrumbs of human activities and unveiling the knowledge hidden in the big data for addressing the big questions about social complexity. We envision the PNS as a globally distributed, self-organizing, techno-social system for answering analytical questions about the status of world-wide society, based on three pillars: social sensing, social mining and the idea of trust networks and privacy-aware social mining. We discuss the ingredients of a science and a technology necessary to build the PNS upon the three mentioned pillars, beyond the limitations of their respective state-of-art. Social sensing is aimed at developing better methods for harvesting the big data from the techno-social ecosystem and make them available for mining, learning and analysis at a properly high abstraction level. Social mining is the problem of discovering patterns and models of human behaviour from the sensed data across the various social dimensions by data mining, machine learning and social network analysis. Trusted networks and privacy-aware social mining is aimed at creating a new deal around the questions of privacy and data ownership empowering individual persons with full awareness and control on own personal data, so that users may allow access and use of their data for their own good and the common good. The PNS will provide a goal-oriented knowledge discovery framework, made of technology and people, able to configure itself to the aim of answering questions about the pulse of global society. Given an analytical request, the PNS activates a process composed by a variety of interconnected tasks exploiting the social sensing and mining methods within the transparent ecosystem provided by the trusted network. The PNS we foresee is the key tool for individual and collective awareness for the knowledge society. We need such a tool for everyone to become fully aware of how powerful is the knowledge of our society we can achieve by leveraging our wisdom as a crowd, and how important is that everybody participates both as a consumer and as a producer of the social knowledge, for it to become a trustable, accessible, safe and useful public good. Graphical abstrac

    Analytical reasoning task reveals limits of social learning in networks

    Full text link
    Social learning -by observing and copying others- is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is our ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of lab-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions, and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an 'unreflective copying bias,' which limits their social learning to the output, rather than the process, of their peers' reasoning -even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behavior through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning

    A planetary nervous system for social mining and collective awareness

    Get PDF
    We present a research roadmap of a Planetary Nervous System (PNS), capable of sensing and mining the digital breadcrumbs of human activities and unveiling the knowledge hidden in the big data for addressing the big questions about social complexity. We envision the PNS as a globally distributed, self-organizing, techno-social system for answering analytical questions about the status of world-wide society, based on three pillars: social sensing, social mining and the idea of trust networks and privacy-aware social mining. We discuss the ingredients of a science and a technology necessary to build the PNS upon the three mentioned pillars, beyond the limitations of their respective state-of-art. Social sensing is aimed at developing better methods for harvesting the big data from the techno-social ecosystem and make them available for mining, learning and analysis at a properly high abstraction level. Social mining is the problem of discovering patterns and models of human behaviour from the sensed data across the various social dimensions by data mining, machine learning and social network analysis. Trusted networks and privacy-aware social mining is aimed at creating a new deal around the questions of privacy and data ownership empowering individual persons with full awareness and control on own personal data, so that users may allow access and use of their data for their own good and the common good. The PNS will provide a goal-oriented knowledge discovery framework, made of technology and people, able to configure itself to the aim of answering questions about the pulse of global society. Given an analytical request, the PNS activates a process composed by a variety of interconnected tasks exploiting the social sensing and mining methods within the transparent ecosystem provided by the trusted network. The PNS we foresee is the key tool for individual and collective awareness for the knowledge society. We need such a tool for everyone to become fully aware of how powerful is the knowledge of our society we can achieve by leveraging our wisdom as a crowd, and how important is that everybody participates both as a consumer and as a producer of the social knowledge, for it to become a trustable, accessible, safe and useful public good.Seventh Framework Programme (European Commission) (grant agreement No. 284709

    High resolution dynamical mapping of social interactions with active RFID

    Get PDF
    In this paper we present an experimental framework to gather data on face-to-face social interactions between individuals, with a high spatial and temporal resolution. We use active Radio Frequency Identification (RFID) devices that assess contacts with one another by exchanging low-power radio packets. When individuals wear the beacons as a badge, a persistent radio contact between the RFID devices can be used as a proxy for a social interaction between individuals. We present the results of a pilot study recently performed during a conference, and a subsequent preliminary data analysis, that provides an assessment of our method and highlights its versatility and applicability in many areas concerned with human dynamics

    MLP: a MATLAB toolbox for rapid and reliable auditory threshold estimation

    Get PDF
    In this paper, we present MLP, a MATLAB toolbox enabling auditory thresholds estimation via the adaptive Maximum Likelihood procedure proposed by David Green (1990, 1993). This adaptive procedure is particularly appealing for those psychologists that need to estimate thresholds with a good degree of accuracy and in a short time. Together with a description of the toolbox, the current text provides an introduction to the threshold estimation theory and a theoretical explanation of the maximum likelihood adaptive procedure. MLP comes with a graphical interface and it is provided with several built-in, classic psychoacoustics experiments ready to use at a mouse click

    The uniting of Europe and the foundation of EU studies: revisiting the neofunctionalism of Ernst B. Haas

    Get PDF
    This article suggests that the neofunctionalist theoretical legacy left by Ernst B. Haas is somewhat richer and more prescient than many contemporary discussants allow. The article develops an argument for routine and detailed re-reading of the corpus of neofunctionalist work (and that of Haas in particular), not only to disabuse contemporary students and scholars of the normally static and stylized reading that discussion of the theory provokes, but also to suggest that the conceptual repertoire of neofunctionalism is able to speak directly to current EU studies and comparative regionalism. Neofunctionalism is situated in its social scientific context before the theory's supposed erroneous reliance on the concept of 'spillover' is discussed critically. A case is then made for viewing Haas's neofunctionalism as a dynamic theory that not only corresponded to established social scientific norms, but did so in ways that were consistent with disciplinary openness and pluralism

    Relaxed 2-D Principal Component Analysis by LpL_p Norm for Face Recognition

    Full text link
    A relaxed two dimensional principal component analysis (R2DPCA) approach is proposed for face recognition. Different to the 2DPCA, 2DPCA-L1L_1 and G2DPCA, the R2DPCA utilizes the label information (if known) of training samples to calculate a relaxation vector and presents a weight to each subset of training data. A new relaxed scatter matrix is defined and the computed projection axes are able to increase the accuracy of face recognition. The optimal LpL_p-norms are selected in a reasonable range. Numerical experiments on practical face databased indicate that the R2DPCA has high generalization ability and can achieve a higher recognition rate than state-of-the-art methods.Comment: 19 pages, 11 figure

    Mobile Communication Signatures of Unemployment

    Full text link
    The mapping of populations socio-economic well-being is highly constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess; thus the speed of which policies can be designed and evaluated is limited. However, recent studies have shown the value of mobile phone data as an enabling methodology for demographic modeling and measurement. In this work, we investigate whether indicators extracted from mobile phone usage can reveal information about the socio-economical status of microregions such as districts (i.e., average spatial resolution < 2.7km). For this we examine anonymized mobile phone metadata combined with beneficiaries records from unemployment benefit program. We find that aggregated activity, social, and mobility patterns strongly correlate with unemployment. Furthermore, we construct a simple model to produce accurate reconstruction of district level unemployment from their mobile communication patterns alone. Our results suggest that reliable and cost-effective economical indicators could be built based on passively collected and anonymized mobile phone data. With similar data being collected every day by telecommunication services across the world, survey-based methods of measuring community socioeconomic status could potentially be augmented or replaced by such passive sensing methods in the future

    Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees

    Get PDF
    The spread of infectious diseases crucially depends on the pattern of contacts among individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. Few empirical studies are however available that provide estimates of the number and duration of contacts among social groups. Moreover, their space and time resolution are limited, so that data is not explicit at the person-to-person level, and the dynamical aspect of the contacts is disregarded. Here, we want to assess the role of data-driven dynamic contact patterns among individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population. We consider high resolution data of face-to-face interactions between the attendees of a conference, obtained from the deployment of an infrastructure based on Radio Frequency Identification (RFID) devices that assess mutual face-to-face proximity. The spread of epidemics along these interactions is simulated through an SEIR model, using both the dynamical network of contacts defined by the collected data, and two aggregated versions of such network, in order to assess the role of the data temporal aspects. We show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation which retains only the topology of the contact network fails in reproducing the size of the epidemic. These results have important implications in understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics
    corecore