364 research outputs found

    Systemic inflammation and residual viraemia in HIV-positive adults on protease inhibitor monotherapy: a cross-sectional study.

    Get PDF
    Increased levels of markers of systemic inflammation have been associated with serious non-AIDS events even in patients on fully suppressive antiretroviral therapy. We explored residual viremia and systemic inflammation markers in patients effectively treated with ritonavir-boosted protease inhibitor monotherapy (PImono)

    Shared immunotherapeutic approaches in HIV and hepatitis B virus: combine and conquer

    Get PDF
    Purpose of review: The aim of this study was to identify similarities, differences and lessons to be shared from recent progress in HIV and hepatitis B virus (HBV) immunotherapeutic approaches. Recent findings: Immune dysregulation is a hallmark of both HIV and HBV infection, which have shared routes of transmission, with approximately 10% of HIV-positive patients worldwide being coinfected with HBV. Immune modulation therapies to orchestrate effective innate and adaptive immune responses are currently being sought as potential strategies towards a functional cure in both HIV and HBV infection. These are based on activating immunological mechanisms that would allow durable control by triggering innate immunity, reviving exhausted endogenous responses and/or generating new immune responses. Recent technological advances and increased appreciation of humoral responses in the control of HIV have generated renewed enthusiasm in the cure field. Summary: For both HIV and HBV infection, a primary consideration with immunomodulatory therapies continues to be a balance between generating highly effective immune responses and mitigating any significant toxicity. A large arsenal of new approaches and ongoing research offer the opportunity to define the pathways that underpin chronic infection and move closer to a functional cure

    Thermodynamic mapping of effector protein interfaces with RalA and RalB.

    Get PDF
    RalA and RalB are members of the Ras family of small G proteins and are activated downstream of Ras via RalGEFs. The RalGEF-Ral axis represents one of the major effector pathways controlled by Ras and as such is an important pharmacological target. RalA and RalB are approximately 80% identical at the amino acid level; despite this, they have distinct roles both in normal cells and in the disease state. We have used our structure of RalB-RLIP76 to guide an analysis of Ral-effector interaction interfaces, creating panels of mutant proteins to probe the energetics of these interactions. The data provide a physical mechanism that underpins the effector selective mutations commonly employed to dissect Ral G protein function. Comparing the energetic landscape of the RalB-RLIP76 and RalB-Sec5 complexes reveals mutations in RalB that lead to differential binding of the two effector proteins. A panel of RLIP76 mutants was used to probe the interaction between RLIP76 and RalA and -B. Despite 100% sequence identity in the RalA and -B contact residues with RLIP76, differences still exist in the energetic profiles of the two complexes. Therefore, we have revealed properties that may account for some of the functional separation observed with RalA and RalB at the cellular level. Our mutations, in both the Ral isoforms and RLIP76, provide new tools that can be employed to parse the complex biology of Ral G protein signaling networks. The combination of these thermodynamic and structural data can also guide efforts to ablate RalA and -B activity with small molecules and peptides.Captain Stephanos FoundationThis is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/bi501530

    NK cells: a double-edged sword in chronic hepatitis B virus infection.

    Get PDF
    There is natural enrichment of NK cells in the human liver and this intrahepatic predominance underscores their potential importance in the control of infections with hepatotropic viruses such as hepatitis B virus (HBV). The contribution of innate components during chronic HBV infection has been a relatively under-investigated area. However, recent data have highlighted that NK cells are capable of exerting antiviral and immunoregulatory functions whilst also contributing to the pathogenesis of liver injury via death receptor pathways. We will present an overview of current knowledge regarding the complex biology of NK cells in the context of their antiviral versus pathogenic role in chronic hepatitis B as a clinically relevant avenue for further investigation

    Natural killer cells during acute HIV-1 infection: clues for HIV-1 prevention and therapy

    Get PDF
    Despite progress in preexposure prophylaxis, the number of newly diagnosed cases with HIV-1 remains high, highlighting the urgent need for preventive and therapeutic strategies to reduce HIV-1 acquisition and limit disease progression. Early immunological events, occurring during acute infection, are key determinants of the outcome and course of disease. Understanding early immune responses occurring before viral set-point is established, is critical to identify potential targets for prophylactic and therapeutic approaches. Natural killer (NK) cells represent a key cellular component of innate immunity and contribute to the early host defence against HIV-1 infection, modulating the pathogenesis of acute HIV-1 infection (AHI). Emerging studies have identified tools for harnessing NK cell responses and expanding specialized NK subpopulations with adaptive/memory features, paving the way for development of novel HIV-1 therapeutics. This review highlights the knowns and unknowns regarding the role of NK cell subsets in the containment of acute HIV-1 infection, and summarizes recent advances in selectively augmenting NK cell functions through prophylactic and therapeutic interventions

    Toll-Like Receptor 8 Agonist and Bacteria Trigger Potent Activation of Innate Immune Cells in Human Liver

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The study was supported by a Grant core funding from the Agency for Science Technology and Research (A*STAR, Singapore) and a Singapore Translational Research Investigator Award (NRMC/StaR/013/2012) to AB as well as NIHR Biomedical Centre, Oxford, WT 091663MA, NIAID1U19AI082630-01, Oxford Martin School funding and an NIHR Senior Investigator award to PK

    URBAN TRAFFIC FLOW ANALYSIS BASED ON DEEP LEARNING CAR DETECTION FROM CCTV IMAGE SERIES

    Get PDF
    Traffic flow analysis is fundamental for urban planning and management of road traffic infrastructure. Automatic number plate recognition (ANPR) systems are conventional methods for vehicle detection and travel times estimation. However, such systems are specifically focused on car plates, providing a limited extent of road users. The advance of open-source deep learning convolutional neural networks (CNN) in combination with freely-available closed-circuit television (CCTV) datasets have offered the opportunities for detection and classification of various road users. The research, presented here, aims to analyse traffic flow patterns through fine-tuning pre-trained CNN models on domain-specific low quality imagery, as captured in various weather conditions and seasons of the year 2018. Such imagery is collected from the North East Combined Authority (NECA) Travel and Transport Data, Newcastle upon Tyne, UK. Results show that the fine-tuned MobileNet model with 98.2 % precision, 58.5 % recall and 73.4 % harmonic mean could potentially be used for a real time traffic monitoring application with big data, due to its fast performance. Compared to MobileNet, the fine-tuned Faster region proposal R-CNN model, providing a better harmonic mean (80.4 %), recall (68.8 %) and more accurate estimations of car units, could be used for traffic analysis applications that demand higher accuracy than speed. This research ultimately exploits machine learning alogrithms for a wider understanding of traffic congestion and disruption under social events and extreme weather conditions

    Molecular bases of diabetic nephropathy

    Get PDF
    The determinant of the diabetic nephropathy is hyperglycemia, but hypertension and other genetic factors are also involved. Glomerulus is the focus of the injury, where mesangial cell proliferation and extracellular matrix occur because of the increase of the intra- and extracellular glucose concentration and overexpression of GLUT1. Sequentially, there are increases in the flow by the poliol pathway, oxidative stress, increased intracellular production of advanced glycation end products (AGEs), activation of the PKC pathway, increase of the activity of the hexosamine pathway, and activation of TGF-beta1. High glucose concentrations also increase angiotensin II (AII) levels. Therefore, glucose and AII exert similar effects in inducing extracellular matrix formation in the mesangial cells, using similar transductional signal, which increases TGF-beta1 levels. In this review we focus in the effect of glucose and AII in the mesangial cells in causing the events related to the genesis of diabetic nephropathy. The alterations in the signal pathways discussed in this review give support to the observational studies and clinical assays, where metabolic and antihypertensive controls obtained with angiotensin-converting inhibitors have shown important and additive effect in the prevention of the beginning and progression of diabetic nephropathy. New therapeutic strategies directed to the described intracellular events may give future additional benefits.O principal determinante da nefropatia diabética é a hiperglicemia, mas hipertensão e fatores genéticos também estão envolvidos. O glomérulo é o foco de lesão, onde proliferação celular mesangial e produção excessiva de matriz extracelular decorrem do aumento da glicose intracelular, por excesso de glicose extracelular e hiperexpressão de GLUT1. Seguem-se aumento do fluxo pela via dos polióis, estresse oxidativo intracelular, produção intracelular aumentada de produtos avançados da glicação não enzimática (AGEs), ativação da via da PKC, aumento da atividade da via das hexosaminas e ativação de TGF-beta1. Altas concentrações de glicose também aumentam angiotensina II (AII) nas células mesangiais por aumento intracelular da atividade da renina (ações intrácrinas, mediando efeitos proliferativos e inflamatórios diretamente). Portanto, glicose e AII exercem efeitos proliferativos celulares e de matriz extracelular nas células mesangiais, utilizando vias de transdução de sinais semelhantes, que levam a aumento de TGF-beta1. Nesse estudo são revisadas as vias que sinalizam os efeitos da glicose e AII nas células mesangiais em causar os eventos-chaves relacionados à gênese da glomerulopatia diabética. As alterações das vias de sinalização implicadas na glomerulopatia, aqui revisadas, suportam dados de estudos observacionais/ensaios clínicos, onde controle metabólico e anti-hipertensivo, especificamente com inibidores do sistema renina-angiotensina, têm-se mostrado importantes - e aditivos - na prevenção do início e progressão da nefropatia. Novas estratégias terapêuticas dirigidas aos eventos intracelulares descritos deverão futuramente promover benefício adicional.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)HC Instituto do Coração Unidade de HipertensãoUSP FMUniversidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Laboratório de NefrologiaFundação Universitária de Cardiologia Instituto de Cardiologia Laboratório de Cardiologia Molecular e CelularUNIFESP, EPM, Laboratório de NefrologiaSciEL

    Subordinate Effect of -21M HLA-B Dimorphism on NK Cell Repertoire Diversity and Function in HIV-1 Infected Individuals of African Origin

    Get PDF
    Natural Killer (NK) cells play an important role in antiviral defense and their potent effector function identifies them as key candidates for immunotherapeutic interventions in chronic viral infections. Their remarkable functional agility is achieved by virtue of a wide array of germline-encoded inhibitory and activating receptors ensuring a self-tolerant and tunable repertoire. NK cell diversity is generated by a combination of factors including genetic determinants and infections/environmental factors, which together shape the NK cell pool and functional potential. Recently a genetic polymorphism at position -21 of HLA-B, which influences the supply of HLA-E binding peptides and availability of HLA-E for recognition by the inhibitory NK cell receptor NKG2A, was shown to have a marked influence on NK cell functionality in healthy human cytomegalovirus (HCMV) seronegative Caucasian individuals. In this study, -21 methionine (M)-expressing alleles supplying HLA-E binding peptides were largely poor ligands for inhibitory killer immunoglobulin-like receptors (KIRs), and a bias to NKG2A-mediated education of functionally-potent NK cells was observed. Here, we investigated the effect of this polymorphism on the phenotype and functional capacity of peripheral blood NK cells in a cohort of 36 African individuals with human immunodeficiency virus type 1 (HIV-1)/HCMV co-infection. A similarly profound influence of dimorphism at position -21 of HLA-B on NK cells was not evident in these subjects. They predominantly expressed African specific HLA-B and -C alleles that contribute a distinct supply of NKG2A and KIR ligands, and these genetic differences were compounded by the marked effect of HIV-1/HCMV co-infection on NK cell differentiation. Together, these factors resulted in a lack of correlation of the HLA-B -21 polymorphism with surface abundance of HLA-E and loss of the NK cell functional advantage in subjects with -21M HLA-B alleles. Instead, our data suggest that during HIV/HCMV co-infection exposure of NK cells to an environment that displays altered HLA-E ligands drives adaptive NKG2C+ NK cell expansions influencing effector responses. Increased efforts to understand how NK cells are functionally calibrated to self-HLA during chronic viral infections will pave the way to developing targeted therapeutic interventions to overcome the current barriers to enhancing immune-based antiviral control
    corecore