15,055 research outputs found
Identifying the impact of tidal level variation on river basin flooding
Different parts of Sri Lanka are regularly subjected to a wide range of natural disasters, of which floods are most common. When severe, flooding can decrease the economic and social development of the country and the Government of Sri Lanka has to spend huge amounts of money each year to address such problems. Floods occur mostly because of heavy rainfall combined with human-induced factors in the catchment areas. In this project, tidal level variation is considered as a factor for floods in the river basins. The tidal level changes periodically due to the gravitational attraction from the sun and the moon and the centrifugal force of the earth’s rotation. This project studied the relationship between changes in tide and river water level in the mouth of the Kelani River. Tidal data was collected from the Colombo Harbor, and water level data and river flow data was obtained from the Nagalagam Street gauge and Hanwella gauge. It was found that there is a direct relationship between tidal level and flood level in the river mouth area. Therefore, it is proposed that tidal level variations be considered in order to make accurate flood predictions in the river mouth areas.Length: pp.119-126River basinsFlooding
Parallel asynchronous systems and image processing algorithms
A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science
Strategies for improving minor irrigation systems in Sri Lanka
Irrigation systems / Small scale systems / Research / Sri Lanka
Parallel asynchronous hardware implementation of image processing algorithms
Research is being carried out on hardware for a new approach to focal plane processing. The hardware involves silicon injection mode devices. These devices provide a natural basis for parallel asynchronous focal plane image preprocessing. The simplicity and novel properties of the devices would permit an independent analog processing channel to be dedicated to every pixel. A laminar architecture built from arrays of the devices would form a two-dimensional (2-D) array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuron-like asynchronous pulse-coded form through the laminar processor. No multiplexing, digitization, or serial processing would occur in the preprocessing state. High performance is expected, based on pulse coding of input currents down to one picoampere with noise referred to input of about 10 femtoamperes. Linear pulse coding has been observed for input currents ranging up to seven orders of magnitude. Low power requirements suggest utility in space and in conjunction with very large arrays. Very low dark current and multispectral capability are possible because of hardware compatibility with the cryogenic environment of high performance detector arrays. The aforementioned hardware development effort is aimed at systems which would integrate image acquisition and image processing
Prognostic significance of exercise-induced premature ventricular complexes: a systematic review and meta-analysis of observational studies
BACKGROUND: Exercise-induced premature ventricular complexes (EI-PVCs) are common during exercise stress tests. Their optimal management and prognostic significance remain uncertain. AIM: To perform meta-analysis of observational studies on the prognostic significance of EI-PVCs. METHODS: A search was conducted on Medline and Embase. Inclusion criteria were observational studies comparing the prognosis of patients with and without EI-PVCs whilst exclusion criteria were studies without confounder adjustment and studies with zero endpoints. Composite endpoints included all-cause mortality, cardiac mortality and cardiovascular events. Relative risk of endpoints were analysed with random effects model. Meta-regression and sensitivity analysis were performed. RESULTS: Ten studies were included. In asymptomatic patients who had no clinical evidence of heart disease, EI-PVCs were associated with a pooled risk ratio of 1.82 (95% CI 1.44 to 2.30) of developing adverse cardiovascular events over 16 years. The corresponding pooled RR for patients with symptomatic heart disease was 1.36 (95% CI 1.18 to 1.57) over 5.4 years. Sensitivity analysis: only EI-PVCs on the recovery phase of an exercise test, not during exercise, had adverse prognostic significance. CONCLUSIONS: EI-PVCs are correlated with a higher risk of all cause death or cardiovascular events in the long term. This risk is elevated in asymptomatic patients without clinical heart disease and in patients with symptomatic heart disease. The fact that only EI-PVCs during recovery, and not during exercise, have poor prognostic value suggests that autonomic dysfunction may play a role in this association. Further studies are needed to see if autonomic manipulation by drugs or catheter-based methods can improve the poor prognosis associated with EI-PVCs
- …
