4,103 research outputs found

    Representation of the distribution of the snow cover on the surface of the Earth's dry land

    Get PDF
    The distribution of the snow cover on the surface of the Earth's dry land, is discussed. The general laws of this distribution and the influencing factors are determined

    Peculiar behavior of the electrical resistivity of MnSi at the ferromagnetic phase transition

    Full text link
    The electrical resistivity of a single crystal of MnSi was measured across its ferromagnetic phase transition line at ambient and high pressures. Sharp peaks of the temperature coefficient of resistivity characterize the transition line. Analysis of these data shows that at pressures to ~0.35 GPa these peaks have fine structure, revealing a shoulder at ~ 0.5 K above the peak. It is symptomatic that this structure disappears at pressures higher than ~0.35 GPa, which was identified earlier as a tricritical poin

    On the Zeros of the Solutions to Nonlinear Hyperbolic Equations with Delays

    Get PDF
    2002 Mathematics Subject Classification: Primary 35В05; Secondary 35L15We consider the nonlinear hyperbolic equation with delays uxy + λuxy(x - σ, у - τ) + c(x, у, u, ux, uy) = f(x, у) . We obtain sufficient conditions for oscillation of the solutions of problems of Goursat in the case, where λ>0.This work was partly supported by Grant MM-437 and Grant MM-516

    A Pulsational Model for the Orthogonal Polarization Modes in Radio Pulsars

    Get PDF
    In an earlier paper, we introduced a model for pulsars in which non-radial oscillations of high spherical degree (\el) aligned to the magnetic axis of a spinning neutron star were able to reproduce subpulses like those observed in single-pulse measurements of pulsar intensity. The model did not address polarization, which is an integral part of pulsar emission. Observations show that many pulsars emit radio waves that appear to be the superposition of two linearly polarized emission modes with orthogonal polarization angles. In this paper, we extend our model to incorporate linear polarization. As before, we propose that pulsational displacements of stellar material modulate the pulsar emission, but now we apply this modulation to a linearly-polarized mode of emission, as might be produced by curvature radiation. We further introduce a second polarization mode, orthogonal to the first, that is modulated by pulsational velocities. We combine these modes in superposition to model the observed Stokes parameters in radio pulsars.Comment: 19 pages, 4 figures accepted Ap

    Preparation and characterization of Bi26–2xMn2xMo10O69-d and Bi26.4Mn0.6Mo10–2yMe2yO69-d(Me = V, Fe) solid solutions

    Get PDF
    Received: 06.06.2017; accepted: 23.06.2017; published: 14.07.2017.Single phase samples of bismuth molybdate, Bi26Mo10O69, doped with Mn on the bismuth sublattice and V, Fe on the molybdenum sublattice were found to crystallize in the triclinic Bi26Mo10O69 structure at low doping levels and in the monoclinic Bi26Mo10O69 structure - at higher dopant concentration. The assumption that all Mn ions have an oxidation state of +2 was confirmed by means of magnetic measurement results analysis using Curie-Weiss law. Conductivity was investigated using impedance spectroscopy. The conductivity of Bi26.4Mn0.6Mo9.6Fe0.4O69-d was 1.2*10-2 S*cm-1 at 973 K and 2.2*10-4 S*cm-1 at 623 K, and the conductivity of Bi26.4Mn0.6Mo9.2V0.8O69-d was 2.2*10-3 S*cm-1 at 973 K and 2.2*10-5 S*cm-1 at 623 K

    Comparing Geometrical and Delay Radio Emission Heights in Pulsars

    Full text link
    We use a set of carefully selected published average multifrequency polarimetric observations for six bright cone dominated pulsars and devise a method to combine the multifrequency polarization position angle (PPA) sweep traverses. We demonstrate that the PPA traverse is in excellent agreement with the rotating vector model over this broad frequency range confirming that radio emission emanates from perfectly dipolar field lines. For pulsars with central core emission in our sample, we find the peak of central core component to lag the steepest gradient of the PPA traverse at several frequencies. Also significant frequency evolution of the core width is observed over this frequency range. The above facts strongly suggest: (a) the peak core emission does not lie on the fiducial plane containing the dipole magnetic axis and the rotation axis, and (b) the core emission does not originate from the polar cap surface.Comment: Accepted for publication in Astronomy and Astrophysic

    On the Nature of Precursors in the Radio Pulsar Profiles

    Full text link
    In the average profiles of several radio pulsars, the main pulse is accompanied by the preceding component. This so called precursor is known for its distinctive polarization, spectral, and fluctuation properties. Recent single-pulse observations hint that the sporadic activity at the extreme leading edge of the pulse may be prevalent in pulsars. We for the first time propose a physical mechanism of this phenomenon. It is based on the induced scattering of the main pulse radiation into the background. We show that the scattered component is directed approximately along the ambient magnetic field and, because of rotational aberration in the scattering region, appears in the pulse profile as a precursor to the main pulse. Our model naturally explains high linear polarization of the precursor emission, its spectral and fluctuation peculiarities as well as suggests a specific connection between the precursor and the main pulse at widely spaced frequencies. This is believed to stimulate multifrequency single-pulse studies of intensity modulation in different pulsars.Comment: 5 pages, no figures. Accepted for publication in MNRAS Letter

    Elastic properties of FeSi

    Full text link
    Measurements of the sound velocities in a single crystal of FeSi were performed in the temperature range 4-300 K. Elastic constants C12C_{12} and C44C_{44} deviate from a quasiharmonic behavior at high temperature; whereas, C12C_{12} increases anomalously in the entire range of temperature, indicating a change in the electron structure of this materia

    Ultrasonic studies of the magnetic phase transition in MnSi

    Full text link
    Measurements of the sound velocities in a single crystal of MnSi were performed in the temperature range 4-150 K. Elastic constants, controlling propagation of longitudinal waves reveal significant softening at a temperature of about 29.6 K and small discontinuities at \sim28.8 K, which corresponds to the magnetic phase transition in MnSi. In contrast the shear elastic moduli do not show any softening at all, reacting only to the small volume deformation caused by the magneto-volume effect. The current ultrasonic study exposes an important fact that the magnetic phase transition in MnSi, occurring at 28.8 K, is just a minor feature of the global transformation marked by the rounded maxima or minima of heat capacity, thermal expansion coefficient, sound velocities and absorption, and the temperature derivative of resistivity.Comment: 4 pages, 4 figure
    corecore