2,195 research outputs found
MOCVD synthesis of compositionally tuned topological insulator nanowires
Device applications involving topological insulators (TIs) will require the
development of scalable methods for fabricating TI samples with sub-micron
dimensions, high quality surfaces, and controlled compositions. Here we use
Bi-, Se-, and Te-bearing metalorganic precursors to synthesize TIs in the form
of nanowires. Single crystal nanowires can be grown with compositions ranging
from Bi2Se3 to Bi2Te3, including the ternary compound Bi2Te2Se. These high
quality nanostructured TI compounds are suitable platforms for on-going
searches for Majorana Fermions
Measurements of strongly-anisotropic g-factors for spins in single quantum states
We have measured the full angular dependence, as a function of the direction
of magnetic field, for the Zeeman splitting of individual energy states in
copper nanoparticles. The g-factors for spin splitting are highly anisotropic,
with angular variations as large as a factor of five. The angular dependence
fits well to ellipsoids. Both the principal-axis directions and g-factor
magnitudes vary between different energy levels within one nanoparticle. The
variations agree quantitatively with random-matrix theory predictions which
incorporate spin-orbit coupling.Comment: 4 pages, 3 figures, 2 in colo
Field Tuning the G-Factor in InAs Nanowire Double Quantum Dots
We study the effects of magnetic and electric fields on the g-factors of
spins confined in a two-electron InAs nanowire double quantum dot. Spin
sensitive measurements are performed by monitoring the leakage current in the
Pauli blockade regime. Rotations of single spins are driven using
electric-dipole spin resonance. The g-factors are extracted from the spin
resonance condition as a function of the magnetic field direction, allowing
determination of the full g-tensor. Electric and magnetic field tuning can be
used to maximize the g-factor difference and in some cases altogether quench
the EDSR response, allowing selective single spin control.Comment: Related papers at http://pettagroup.princeton.ed
Nonadiabatic quantum control of a semiconductor charge qubit
We demonstrate multipulse quantum control of a single electron charge qubit.
The qubit is manipulated by applying nonadiabatic voltage pulses to a surface
depletion gate and readout is achieved using a quantum point contact charge
sensor. We observe Ramsey fringes in the excited state occupation in response
to a pi/2 - pi/2 pulse sequence and extract T2* ~ 60 ps away from the charge
degeneracy point. Simulations suggest these results may be extended to
implement a charge-echo by reducing the interdot tunnel coupling and pulse rise
time, thereby increasing the nonadiabaticity of the pulses.Comment: Related papers at http://pettagroup.princeton.ed
Radio frequency charge sensing in InAs nanowire double quantum dots
We demonstrate charge sensing of an InAs nanowire double quantum dot (DQD)
coupled to a radio frequency (rf) circuit. We measure the rf signal reflected
by the resonator using homodyne detection. Clear single dot and DQD behavior
are observed in the resonator response. rf-reflectometry allows measurements of
the DQD charge stability diagram in the few-electron regime even when the dc
current through the device is too small to be measured. For a signal-to-noise
ratio of one, we estimate a minimum charge detection time of 350 microseconds
at interdot charge transitions and 9 microseconds for charge transitions with
the leads.Comment: Related papers at http://pettagroup.princeton.ed
Controlled MOCVD growth of Bi2Se3 topological insulator nanoribbons
Topological insulators are a new class of materials that support
topologically protected electronic surface states. Potential applications of
the surface states in low dissipation electronic devices have motivated efforts
to create nanoscale samples with large surface-to-volume ratios and highly
controlled stoichiometry. Se vacancies in Bi2Se3 give rise to bulk conduction,
which masks the transport properties of the surface states. We have therefore
developed a new route for the synthesis of topological insulator nanostructures
using metalorganic chemical vapour deposition (MOCVD). MOCVD allows for control
of the Se/Bi flux ratio during growth. With the aim of rational growth, we vary
the Se/Bi flux ratio, growth time, and substrate temperature, and observe
morphological changes which indicate a growth regime in which nanoribbon
formation is limited by the Bi precursor mass-flow. MOCVD growth of Bi2Se3
nanostructures occurs via a distinct growth mechanism that is nucleated by gold
nanoparticles at the base of the nanowire. By tuning the reaction conditions,
we obtain either single-crystalline ribbons up to 10 microns long or thin
micron-sized platelets.Comment: Related papers at http://pettagroup.princeton.ed
Quantum Coherence in a One-Electron Semiconductor Charge Qubit
We study quantum coherence in a semiconductor charge qubit formed from a GaAs
double quantum dot containing a single electron. Voltage pulses are applied to
depletion gates to drive qubit rotations and non-invasive state readout is
achieved using a quantum point contact charge detector. We measure a maximum
coherence time of ~7 ns at the charge degeneracy point, where the qubit level
splitting is first-order-insensitive to gate voltage fluctuations. We compare
measurements of the coherence time as a function of detuning with predictions
from a 1/f noise model.Comment: Related papers at http://pettagroup.princeton.ed
Investigation of Mobility Limiting Mechanisms in Undoped Si/SiGe Heterostructures
We perform detailed magnetotransport studies on two-dimensional electron
gases (2DEGs) formed in undoped Si/SiGe heterostructures in order to identify
the electron mobility limiting mechanisms in this increasingly important
materials system. By analyzing data from 26 wafers with different
heterostructure growth profiles we observe a strong correlation between the
background oxygen concentration in the Si quantum well and the maximum
mobility. The highest quality wafer supports a 2DEG with a mobility of 160,000
cm^2/Vs at a density 2.17 x 10^11/cm^2 and exhibits a metal-to-insulator
transition at a critical density 0.46 x 10^11/cm^2. We extract a valley
splitting of approximately 150 microeV at a magnetic field of 1.8 T. These
results provide evidence that undoped Si/SiGe heterostructures are suitable for
the fabrication of few-electron quantum dots.Comment: Related papers at http://pettagroup.princeton.ed
- …
