14,684 research outputs found
Eco-friendly gas mixtures for Resistive Plate Chambers based on Tetrafluoropropene and Helium
Due to the recent restrictions deriving from the application of the Kyoto
protocol, the main components of the gas mixtures presently used in the
Resistive Plate Chambers systems of the LHC experiments will be most probably
phased out of production in the coming years. Identifying possible replacements
with the adequate characteristics requires an intense R&D, which was recently
started, also in collaborations across the various experiments. Possible
candidates have been proposed and are thoroughly investigated. Some tests on
one of the most promising candidate - HFO-1234ze, an allotropic form of
tetrafluoropropane- have already been reported. Here an innovative approach,
based on the use of Helium, to solve the problems related to the too elevate
operating voltage of HFO-1234ze based gas mixtures, is discussed and the
relative first results are shown.Comment: 9 pages, 6 figures, 1 tabl
Modified POF Sensor for Gaseous Hydrogen Fluoride Monitoring in the Presence of Ionizing Radiations
This paper describes the development of a sensor designed to detect low concentrations of hydrogen fluoride (HF) in gas mixtures. The sensor employs a plastic optical fiber (POF) covered with a thin layer of glass- like material. HF attacks the glass and alters the fiber transmission capability so that the detection simply requires a LED and a photodiode. The coated POF is obtained by means of low-pressure plasma-enhanced chemical vapor deposition that allows the glass-like film to be deposited at low temperature without damaging the fiber core. The developed sensor will be installed in the recirculation gas system of the resistive plate chamber muon detector of the Compact Muon Solenoid experiment at the Large Hadron Collider accelerator of the European Organization for Nuclear Research (CERN
Application Design and Engagement Strategy of a Game with a Purpose for Climate Change Awareness
The Climate Challenge is an online application in the tradition of games with a purpose that combines practical steps to reduce carbon footprint with predictive tasks to estimate future climate-related conditions. As part of the Collective Awareness Platform, the application aims to increase environmental literacy and motivate users to adopt more sustainable lifestyles. It has been deployed in conjunction with the Media Watch on Climate Change, a publicly available knowledge aggregator and visual analytics system for exploring environmental content from multiple online sources. This paper presents the motivation and goals of the Climate Challenge from an interdisciplinary perspective, outlines the application design including the types of tasks built into the application, discusses incentive mechanisms, and analyses the pursued user engagement strategies
Fiber Bragg Grating sensors for deformation monitoring of GEM foils in HEP detectors
Fiber Bragg Grating (FBG) sensors have been so far mainly used in high energy
physics (HEP) as high precision positioning and re-positioning sensors and as
low cost, easy to mount, radiation hard and low space- consuming temperature
and humidity devices. FBGs are also commonly used for very precise strain
measurements. In this work we present a novel use of FBGs as flatness and
mechanical tensioning sensors applied to the wide Gas Electron Multiplier (GEM)
foils of the GE1/1 chambers of the Compact Muon Solenoid (CMS) experiment at
Large Hadron Collider (LHC) of CERN. A network of FBG sensors has been used to
determine the optimal mechanical tension applied and to characterize the
mechanical stress applied to the foils. The preliminary results of the test
performed on a full size GE1/1 final prototype and possible future developments
will be discussed.Comment: Four pages, seven figures. Presented by Michele Caponero at IWASI
2015, Gallipoli (Italy
Candidate eco-friendly gas mixtures for MPGDs
Modern gas detectors for detection of particles require F-based gases for optimal performance.Recent regulations demand the use of environmentally unfriendly F-based gases t o be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements
Humic-like bioactivity on emergence and early growth of maize (Zea mays L.) of water-soluble lignins isolated from biomass for Energy.
Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics
Modern gas detectors for detection of particles require F-based gases for
optimal performance. Recent regulations demand the use of environmentally
unfriendly F-based gases to be limited or banned. This review studies
properties of potential eco-friendly gas candidate replacements.Comment: 38 pages, 9 figures, 8 tables. To be submitted to Journal of
Instrumentatio
A 1 m Gas Time Projection Chamber with Optical Readout for Directional Dark Matter Searches: the CYGNO Experiment
The aim of the CYGNO project is the construction and operation of a 1~m
gas TPC for directional dark matter searches and coherent neutrino scattering
measurements, as a prototype toward the 100-1000~m (0.15-1.5 tons) CYGNUS
network of underground experiments. In such a TPC, electrons produced by
dark-matter- or neutrino-induced nuclear recoils will drift toward and will be
multiplied by a three-layer GEM structure, and the light produced in the
avalanche processes will be readout by a sCMOS camera, providing a 2D image of
the event with a resolution of a few hundred micrometers. Photomultipliers will
also provide a simultaneous fast readout of the time profile of the light
production, giving information about the third coordinate and hence allowing a
3D reconstruction of the event, from which the direction of the nuclear recoil
and consequently the direction of the incoming particle can be inferred. Such a
detailed reconstruction of the event topology will also allow a pure and
efficient signal to background discrimination. These two features are the key
to reach and overcome the solar neutrino background that will ultimately limit
non-directional dark matter searches.Comment: 5 page, 7 figures, contribution to the Conference Records of 2018
IEEE NSS/MI
Cms gem detector material study for the hl-lhc
A study on the Gaseous Electron Multiplier (GEM) foil material is performed to determine the moisture diffusion rate, moisture saturation level and the effects on its mechanical properties. The study is focused on the foil contact with ambient air and moisture to determine the value of the diffusion coefficient of water in the foil material. The presence of water inside the detector foil can determine the changes in its mechanical and electrical properties. A simulated model is developed with COMSOL Multiphysics v. 4.3 [1] by taking into account the real GEM foil (hole dimensions, shapes and material), which describes the adsorption of water. This work describes the model, its experimental verification, the water diffusion within the entire sheet geometry of the GEM foil, thus gaining concentration profiles and the time required to saturate the system and the effects on the mechanical properties
- …
