52,587 research outputs found
Three-sublattice Skyrmion crystal in the antiferromagnetic triangular lattice
The frustrated classical antiferromagnetic Heisenberg model with
Dzyaloshinskii-Moriya (DM) interactions on the triangular lattice is studied
under a magnetic field by means of semiclassical calculations and large-scale
Monte Carlo simulations. We show that even a small DM interaction induces the
formation of an Antiferromagnetic Skyrmion crystal (AF-SkX) state. Unlike what
is observed in ferromagnetic materials, we show that the AF-SkX state consists
of three interpenetrating Skyrmion crystals (one by sublattice), and most
importantly, the AF-SkX state seems to survive in the limit of zero
temperature. To characterize the phase diagram we compute the average of the
topological order parameter which can be associated to the number of
topological charges or Skyrmions. As the magnetic field increases this
parameter presents a clear jump, indicating a discontinuous transition from a
spiral phase into the AF-SkX phase, where multiple Bragg peaks coexist in the
spin structure factor. For higher fields, a second (probably continuous)
transition occurs into a featureless paramagnetic phase.Comment: 8 pages, 8 figure
Arc-quasianalytic functions
We work with quasianalytic classes of functions. Consider a real-valued
function y = f(x) on an open subset U of Euclidean space, which satisfies a
quasianalytic equation G(x, y) = 0. We prove that f is arc-quasianalytic (i.e.,
its restriction to every quasianalytic arc is quasianalytic) if and only if f
becomes quasianalytic after (a locally finite covering of U by) finite
sequences of local blowing-ups. This generalizes a theorem of the first two
authors on arc-analytic functions.Comment: 12 page
Atmospheric Calorimetry above 10 eV: Shooting Lasers at the Pierre Auger Cosmic-Ray Observatory
The Pierre Auger Cosmic-Ray Observatory uses the earth's atmosphere as a
calorimeter to measure extensive air-showers created by particles of
astrophysical origin. Some of these particles carry joules of energy. At these
extreme energies, test beams are not available in the conventional sense. Yet
understanding the energy response of the observatory is important. For example,
the propagation distance of the highest energy cosmic-rays through the cosmic
microwave background radiation (CMBR) is predicted to be strong function of
energy. This paper will discuss recently reported results from the observatory
and the use of calibrated pulsed UV laser "test-beams" that simulate the
optical signatures of ultra-high energy cosmic rays. The status of the much
larger 200,000 km companion detector planned for the northern hemisphere
will also be outlined.Comment: 6 pages, 11 figures XIII International Conference on Calorimetry in
High Energy Physic
- …
