3,782 research outputs found
A lattice model of hydrophobic interactions
Hydrogen bonding is modeled in terms of virtual exchange of protons between
water molecules. A simple lattice model is analyzed, using ideas and techniques
from the theory of correlated electrons in metals. Reasonable parameters
reproduce observed magnitudes and temperature dependence of the hydrophobic
interaction between substitutional impurities and water within this lattice.Comment: 7 pages, 3 figures. To appear in Europhysics Letter
Effects of counterion fluctuations in a polyelectrolyte brush
We investigate the effect of counterion fluctuations in a single
polyelectrolyte brush in the absence of added salt by systematically expanding
the counterion free energy about Poisson-Boltzmann mean field theory. We find
that for strongly charged brushes, there is a collapse regime in which the
brush height decreases with increasing charge on the polyelectrolyte chains.
The transition to this collapsed regime is similar to the liquid-gas
transition, which has a first-order line terminating at a critical point. We
find that for monovalent counterions the transition is discontinuous in theta
solvent, while for multivalent counterions the transition is generally
continuous. For collapsed brushes, the brush height is not independent of
grafting density as it is for osmotic brushes, but scales linear with it.Comment: 9 pages, 9 figure
Refolding dynamics of stretched biopolymers upon force quench
Single molecule force spectroscopy methods can be used to generate folding
trajectories of biopolymers from arbitrary regions of the folding landscape. We
illustrate the complexity of the folding kinetics and generic aspects of the
collapse of RNA and proteins upon force quench, using simulations of an RNA
hairpin and theory based on the de Gennes model for homopolymer collapse. The
folding time, , depends asymmetrically on and
where () is the stretch (quench) force, and
is the transition mid-force of the RNA hairpin. In accord with
experiments, the relaxation kinetics of the molecular extension, , occurs
in three stages: a rapid initial decrease in the extension is followed by a
plateau, and finally an abrupt reduction in that occurs as the native
state is approached.
The duration of the plateau increases as decreases
(where is the time in which the force is reduced from to ).
Variations in the mechanisms of force quench relaxation as is altered
are reflected in the experimentally measurable time-dependent entropy, which is
computed directly from the folding trajectories. An analytical solution of the
de Gennes model under tension reproduces the multistage stage kinetics in
. The prediction that the initial stages of collapse should also be a
generic feature of polymers is validated by simulation of the kinetics of
toroid (globule) formation in semiflexible (flexible) homopolymers in poor
solvents upon quenching the force from a fully stretched state. Our findings
give a unified explanation for multiple disparate experimental observations of
protein folding.Comment: 31 pages 11 figure
Analysis of electroencephalograms in Alzheimer's disease patients with multiscale entropy
The aim of this study was to analyse the electroencephalogram (EEG) background activity of Alzheimer’s disease (AD) patients using the Multiscale Entropy (MSE). The MSE is a recently developed method that quantifies the regularity of a signal on different time scales. These time scales are inspected by means of several coarse-grained sequences formed from the analysed signals. We recorded the EEGs from 19 scalp electrodes in 11 AD patients and 11 age-matched controls and estimated the MSE profile for each epoch of the EEG recordings. The shape of the MSE profiles reveals the EEG complexity, and it suggests that the EEG contains information in deeper scales than the smallest one. Moreover, the results showed that the EEG background activity is less complex in AD patients than control subjects. We found significant difference
Fluctuations of a driven membrane in an electrolyte
We develop a model for a driven cell- or artificial membrane in an
electrolyte. The system is kept far from equilibrium by the application of a DC
electric field or by concentration gradients, which causes ions to flow through
specific ion-conducting units (representing pumps, channels or natural pores).
We consider the case of planar geometry and Debye-H\"{u}ckel regime, and obtain
the membrane equation of motion within Stokes hydrodynamics. At steady state,
the applied field causes an accumulation of charges close to the membrane,
which, similarly to the equilibrium case, can be described with renormalized
membrane tension and bending modulus. However, as opposed to the equilibrium
situation, we find new terms in the membrane equation of motion, which arise
specifically in the out-of-equilibrium case. We show that these terms lead in
certain conditions to instabilities.Comment: 7 pages, 2 figures. submitted to Europhys. Let
Fractal Dimensions of Confined Clusters in Two-Dimensional Directed Percolation
The fractal structure of directed percolation clusters, grown at the
percolation threshold inside parabolic-like systems, is studied in two
dimensions via Monte Carlo simulations. With a free surface at y=\pm Cx^k and a
dynamical exponent z, the surface shape is a relevant perturbation when k<1/z
and the fractal dimensions of the anisotropic clusters vary continuously with
k. Analytic expressions for these variations are obtained using a blob picture
approach.Comment: 6 pages, Plain TeX file, epsf, 3 postscript-figure
On the signature of tensile blobs in the scattering function of a stretched polymer
We present Monte Carlo data for a linear chain with excluded volume subjected
to a uniform stretching. Simulation of long chains (up to 6000 beads) at high
stretching allows us to observe the signature of tensile blobs as a crossover
in the scaling behavior of the chain scattering function for wave vectors
perpendicular to stretching. These results and corresponding ones in the
stretching direction allow us to verify for the first time Pincus prediction on
scaling inside blobs. Outside blobs, the scattering function is well described
by the Debye function for a stretched ideal chain.Comment: 4 pages, 4 figures, to appear in Physical Review Letter
- …
