18 research outputs found
The occurrence and spread of Gonyostomum semen (Ehr.) Diesing (Raphidophyceae) in Norwegian lakes
Seasonal variation in phytoplankton and aquatic plants in floodplain lakes (lower Vistula River, Poland)
Actual state of European wetlands and their possible future in the context of global climate change
[EN] The present area of European wetlands is only a fraction of their area before the start of large-scale human colonization of Europe. Many European wetlands have been exploited and managed for various purposes. Large wetland areas have been drained and reclaimed mainly for agriculture and establishment of human settlements. These threats to European wetlands persist. The main responses of European wetlands to ongoing climate change will vary according to wetland type and geographical location. Sea level rise will probably be the decisive factor affecting coastal wetlands, especially along the Atlantic coast. In the boreal part of Europe, increased temperatures will probably lead to increased annual evapotranspiration and lower organic matter accumulation in soil. The role of vast boreal wetlands as carbon sinks may thus be suppressed. In central and western Europe, the risk of floods may support the political will for ecosystem-unfriendly flood defence measures, which may threaten the hydrology of existing wetlands. Southern Europe will probably suffer most from water shortage, which may strengthen the competition for water resources between agriculture, industry and settlements on the one hand and nature conservancy, including wetland conservation, on the other. © 2011 Springer Basel AG.Work on this paper was supported by the projects NPV 2B06023 and MSM 6007665801 of the Ministry of Education, Youth and Sports of the Czech Republic, 526/09/1545 of the Grant Agency of the Czech Republic and QH 82078 of the Czech National Agency of Agricultural Research. We warmly thank Hana Santruckova for helpful comments on the manuscript, Stepan Husak for providing the information on Coleanthus subtilis, Vaclav Nedbal for techical help with the compilation of the map of European wetlands (Fig. 1), Jakub Brom for providing photographs in Fig. 5, and Ondrej Novak for technical help with the preparation of the manuscriptPeer Reviewe
Phylogeography of the freshwater raphidophyte Gonyostomum semen confirms a recent expansion in northern Europe by a single haplotype
Gonyostmum semen is a freshwater raphidophyte that has increased in occurrence and abundance in several countries in northern Europe since the 1980s. More recently, the species has expanded rapidly also in north-eastern Europe, and it is frequently referred to as invasive. To better understand the species history, we have explored the phylogeography of G. semen using strains from northern Europe, United States, and Japan. Three regions of the ribosomal RNA gene (small subunit [SSU], internal transcribed spacer [ITS] and large subunit [LSU]) and one mitochondrial DNA marker (cox1) were analyzed. The SSU and partial LSU sequences were identical in all strains, confirming that they belong to the same species. The ITS region differentiated the American from the other strains, but showed high intra-strain variability. In contrast, the mitochondrial marker cox1 showed distinct differences between the European, American, and Japanese strains. Interestingly, only one cox1 haplotype was detected in European strains. The overall low diversity and weak geographic structure within northern European strains supported the hypothesis of a recent invasion of new lakes by G. semen. Our data also show that the invasive northern European lineage is genetically distinct from the lineages from the other continents. Finally, we concluded that the mitochondrial cox1 was the most useful marker in determining large-scale biogeographic patterns in this species
