560 research outputs found
Intracellular pathways involved in bone regeneration triggered by recombinant silk-silica chimeras
Biomineralization at the organic-inorganic interface is critical to many biology material functions in vitro and in vivo. Recombinant silk-silica fusion peptides are organic-inorganic hybrid material systems that can be effectively used to study and control biologically-mediated mineralization due to the genetic basis of sequence control. However, to date, the mechanisms by which these functionalized silk-silica proteins trigger the differentiation of human mesenchymal stem cells (hMSCs) to osteoblasts remain unknown. To address this challenge, we analyzed silk-silica surfaces for silica-hMSC receptor binding and activation, and the intracellular pathways involved in the induction of osteogenesis on these bioengineered biomaterials. The induction of gene expression of αVβ3 integrin, all three Mitogen-activated Protein Kinsases (MAPKs) as well as c-Jun, Runt-related Transcription Factor 2 (Runx2) and osteoblast marker genes was demonstrated upon growth of the hMSCs on the silk-silica materials. This induction of key markers of osteogenesis correlated with the content of silica on the materials. Moreover, computational simulations were performed for silk/silica-integrin binding which showed activation of αVβ3 integrin in contact with silica. This integrated computational and experimental approach provides insight into interactions that regulate osteogenesis towards more efficient biomaterial designs
Μελέτη επιπτώσεων συνδρομολόγησηςεφαρμογών σε πολυπύρηνες αρχιτεκτονικές
Understanding viral transmission dynamics within populations of reservoir hosts can facilitate greater knowledge of the spillover of emerging infectious diseases. While bat-borne viruses are of concern to public health, investigations into their dynamics have been limited by a lack of longitudinal data from individual bats. Here, we examine capture-mark-recapture (CMR) data from a species of Australian bat (Myotis macropus) infected with a putative novel Alphacoronavirus within a Bayesian framework. Then, we developed epidemic models to estimate the effect of persistently infectious individuals (which shed viruses for extensive periods) on the probability of viral maintenance within the study population. We found that the CMR data analysis supported grouping of infectious bats into persistently and transiently infectious bats. Maintenance of coronavirus within the study population was more likely in an epidemic model that included both persistently and transiently infectious bats, compared with the epidemic model with non-grouping of bats. These findings, using rare CMR data from longitudinal samples of individual bats, increase our understanding of transmission dynamics of bat viral infectious diseases
Minor differences in body condition and immune status between avian influenza virus-infected and noninfected mallards: a sign of coevolution?
Wildlife pathogens can alter host fitness. Low pathogenic avian influenza virus (LPAIV) infection is thought to have negligible impacts on wild birds; however, effects of infection in free-living birds are largely unstudied. We investigated the extent to which LPAIV infection and shedding were associated with body condition and immune status in free-living mallards (Anas platyrhynchos), a partially migratory key LPAIV host species. We sampled mallards throughout the species\u27 annual autumn LPAIV infection peak, and we classified individuals according to age, sex, and migratory strategy (based on stable hydrogen isotope analysis) when analyzing data on body mass and five indices of immune status. Body mass was similar for LPAIV-infected and noninfected birds. The degree of virus shedding from the cloaca and oropharynx was not associated with body mass. LPAIV infection and shedding were not associated with natural antibody (NAbs) and complement titers (first lines of defense against infections), concentrations of the acute phase protein haptoglobin (Hp), ratios of heterophils to lymphocytes (H:L ratio), and avian influenza virus (AIV)-specific antibody concentrations. NAbs titers were higher in LPAIV-infected males and local (i.e., short distance) migrants than in infected females and distant (i.e., long distance) migrants. Hp concentrations were higher in LPAIV-infected juveniles and females compared to infected adults and males. NAbs, complement, and Hp levels were lower in LPAIV-infected mallards in early autumn. Our study demonstrates weak associations between infection with and shedding of LPAIV and the body condition and immune status of free-living mallards. These results may support the role of mallards as asymptomatic carriers of LPAIV and raise questions about possible coevolution between virus and host
Genes Suggest Ancestral Colour Polymorphisms Are Shared across Morphologically Cryptic Species in Arctic Bumblebees
email Suzanne orcd idCopyright: © 2015 Williams et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Coronaviruses and Australian bats: a review in the midst of a pandemic
Australia’s 81 bat species play vital ecological and economic roles via suppression of insect pests and maintenance of native forests through pollination and seed dispersal. Bats also host a wide diversity of coronaviruses globally, including several viral species that are closely related to SARS-CoV-2 and other emergent human respiratory coronaviruses. Although there are hundreds of studies of bat coronaviruses globally, there are only three studies of bat coronaviruses in Australian bat species, and no systematic studies of drivers of shedding. These limited studies have identified two betacoronaviruses and seven alphacoronaviruses, but less than half of Australian species are included in these studies and further research is therefore needed. There is no current evidence of spillover of coronaviruses from bats to humans in Australia, either directly or indirectly via intermediate hosts. The limited available data are inadequate to determine whether this lack of evidence indicates that spillover does not occur or occurs but is undetected. Conversely, multiple international agencies have flagged the potential transmission of human coronaviruses (including SARS CoV-2) from humans to bats, and the consequent threat to bat conservation and human health. Australia has a long history of bat research across a broad range of ecological and associated disciplines, as well as expertise in viral spillover from bats. This strong foundation is an ideal platform for developing integrative approaches to understanding bat health and sustainable protection of human health
Targeting HOX transcription factors in prostate cancer
YesBackground: The HOX genes are a family of transcription factors that help to determine cell and tissue identity
during early development, and which are also over-expressed in a number of malignancies where they have been
shown to promote cell proliferation and survival. The purpose of this study was to evaluate the expression of HOX
genes in prostate cancer and to establish whether prostate cancer cells are sensitive to killing by HXR9, an inhibitor
of HOX function.
Methods: HOX function was inhibited using the HXR9 peptide. HOX gene expression was assessed by RNA
extraction from cells or tissues followed by quantitative PCR, and siRNA was used to block the expression of the
HOX target gene, cFos. In vivo modelling involved a mouse flank tumour induced by inoculation with LNCaP cells.
Results: In this study we show that the expression of HOX genes in prostate tumours is greatly increased with
respect to normal prostate tissue. Targeting the interaction between HOX proteins and their PBX cofactor induces
apoptosis in the prostate cancer derived cell lines PC3, DU145 and LNCaP, through a mechanism that involves a
rapid increase in the expression of cFos, an oncogenic transcription factor. Furthermore, disrupting HOX/PBX
binding using the HXR9 antagonist blocks the growth of LNCaP tumours in a xenograft model over an extended
period.
Conclusion: Many HOX genes are highly over-expressed in prostate cancer, and prostate cancer cells are sensitive
to killing by HXR9 both in vitro and in vivo. The HOX genes are therefore a potential therapeutic target in prostate
cancer.The authors gratefully acknowledge the support of the Prostate Project charity (UK)
Recommended from our members
Recalibration of the delirium prediction model for ICU patients (PRE-DELIRIC): a multinational observational study
Purpose
Recalibration and determining discriminative power, internationally, of the existing delirium prediction model (PRE-DELIRIC) for intensive care patients.
Methods
A prospective multicenter cohort study was performed in eight intensive care units (ICUs) in six countries. The ten predictors (age, APACHE-II, urgent and admission category, infection, coma, sedation, morphine use, urea level, metabolic acidosis) were collected within 24 h after ICU admission. The confusion assessment method for the intensive care unit (CAM-ICU) was used to identify ICU delirium. CAM-ICU screening compliance and inter-rater reliability measurements were used to secure the quality of the data.
Results
A total of 2,852 adult ICU patients were screened of which 1,824 (64 %) were eligible for the study. Main reasons for exclusion were length of stay <1 day (19.1 %) and sustained coma (4.1 %). CAM-ICU compliance was mean (SD) 82 ± 16 % and inter-rater reliability 0.87 ± 0.17. The median delirium incidence was 22.5 % (IQR 12.8–36.6 %). Although the incidence of all ten predictors differed significantly between centers, the area under the receiver operating characteristic (AUROC) curve of the eight participating centers remained good: 0.77 (95 % CI 0.74–0.79). The linear predictor and intercept of the prediction rule were adjusted and resulted in improved re-calibration of the PRE-DELIRIC model.
Conclusions
In this multinational study, we recalibrated the PRE-DELIRIC model. Despite differences in the incidence of predictors between the centers in the different countries, the performance of the PRE-DELIRIC-model remained good. Following validation of the PRE-DELIRIC model, it may facilitate implementation of strategies to prevent delirium and aid improvements in delirium management of ICU patients
The problem of scale in the prediction and management of pathogen spillover
Disease emergence events, epidemics and pandemics all underscore the need to predict zoonotic pathogen spillover. Because cross-species transmission is inherently hierarchical, involving processes that occur at varying levels of biological organization, such predictive efforts can be complicated by the many scales and vastness of data potentially required for forecasting. A wide range of approaches are currently used to forecast spillover risk (e.g. macroecology, pathogen discovery, surveillance of human populations, among others), each of which is bound within particular phylogenetic, spatial and temporal scales of prediction. Here, we contextualize these diverse approaches within their forecasting goals and resulting scales of prediction to illustrate critical areas of conceptual and pragmatic overlap. Specifically, we focus on an ecological perspective to envision a research pipeline that connects these different scales of data and predictions from the aims of discovery to intervention. Pathogen discovery and predictions focused at the phylogenetic scale can first provide coarse and pattern-based guidance for which reservoirs, vectors and pathogens are likely to be involved in spillover, thereby narrowing surveillance targets and where such efforts should be conducted. Next, these predictions can be followed with ecologically driven spatio-temporal studies of reservoirs and vectors to quantify spatio-temporal fluctuations in infection and to mechanistically understand how pathogens circulate and are transmitted to humans. This approach can also help identify general regions and periods for which spillover is most likely. We illustrate this point by highlighting several case studies where long-term, ecologically focused studies (e.g. Lyme disease in the northeast USA, Hendra virus in eastern Australia, Plasmodium knowlesi in Southeast Asia) have facilitated predicting spillover in space and time and facilitated the design of possible intervention strategies. Such studies can in turn help narrow human surveillance efforts and help refine and improve future large-scale, phylogenetic predictions. We conclude by discussing how greater integration and exchange between data and predictions generated across these varying scales could ultimately help generate more actionable forecasts and interventions
Observational Conditioning in Flower Choice Copying by Bumblebees (Bombus terrestris): Influence of Observer Distance and Demonstrator Movement
A. Avargues-Weber was funded by a postdoctoral fellowship from Fyssen fondation: http://www.fondationfyssen.fr/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
- …
